Cargando…

An excursion in diagrammatic algebra : turning a sphere from red to blue /

The aim of this book is to give as detailed a description as is possible of one of the most beautiful and complicated examples in low-dimensional topology. This example is a gateway to a new idea of higher dimensional algebra in which diagrams replace algebraic expressions and relationships between...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Carter, J. Scott
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore ; London : World Scientific, 2011.
Colección:Series on knots and everything ; v. 48
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBOOKCENTRAL_ocn860491786
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |||||||||||
008 111017s2011 si ob 001 0 eng d
040 |a NLE  |b eng  |e pn  |c NLE  |d OCLCO  |d EBLCP  |d MHW  |d DEBSZ  |d OCLCQ  |d OCLCF  |d OCLCQ  |d ZCU  |d MERUC  |d ICG  |d OCLCQ  |d DKC  |d OCLCQ  |d UKAHL  |d OCLCQ  |d SGP  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
020 |a 9814374504 
020 |a 9789814374507 
029 1 |a AU@  |b 000058199755 
029 1 |a DEBBG  |b BV044162020 
029 1 |a DEBSZ  |b 405243758 
029 1 |a DEBSZ  |b 454997167 
035 |a (OCoLC)860491786 
050 4 |a QA612.14  |b .C37 2012 
082 0 4 |a 514.2  |2 23 
049 |a UAMI 
100 1 |a Carter, J. Scott. 
245 1 3 |a An excursion in diagrammatic algebra :  |b turning a sphere from red to blue /  |c by J. Scott Carter. 
260 |a Singapore ;  |a London :  |b World Scientific,  |c 2011. 
300 |a 1 online resource (1 volume) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 0 |a Series on knots and everything ;  |v v. 48 
504 |a Includes bibliographical references and index. 
520 |a The aim of this book is to give as detailed a description as is possible of one of the most beautiful and complicated examples in low-dimensional topology. This example is a gateway to a new idea of higher dimensional algebra in which diagrams replace algebraic expressions and relationships between diagrams represent algebraic relations. The reader may examine the changes in the illustrations in a leisurely fashion; or with scrutiny, the reader will become familiar and develop a facility for these diagrammatic computations. The text describes the essential topological ideas through metaphors t. 
505 0 |a Preface; Contents; 1. A Sphere; 2. Surfaces, Folds, and Cusps; 3. The Inside and Outside; 4. Dimensions; 5. Immersed Surfaces; 6. Movies; Double Points and Triple Points; Critical Exchanges; Example; Summary; 7. Movie Moves; The Evolution in the Intrinsic Sphere; The Fold Set; Double Points and Triple Points; Double Points and Folds; Triple Points, Double Points, and Folds; Conclusion; 8. Taxonomic Summary; 9. How Not to Turn the Sphere Inside-out; 10. A Physical Metaphor; Gauss-Morse Codes; Summary; 11. Sarah's Thesis; 12. The Eversion; 13. The Double Point and Fold Surfaces; Conclusion 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Low-dimensional topology. 
650 6 |a Topologie de basse dimension. 
650 7 |a Low-dimensional topology  |2 fast 
758 |i has work:  |a An excursion in diagrammatic algebra (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGBv4vBxvXwRYrw6qRCjfm  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 |c Hardback  |z 9789814374491 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=846125  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH25589514 
938 |a EBL - Ebook Library  |b EBLB  |n EBL846125 
994 |a 92  |b IZTAP