Semiconductor optical amplifiers /
This invaluable look provides a comprehensive treatment of design and applications of semiconductor optical amplifiers (SOA). SOA is an important component for optical communication systems. It has applications as in-line amplifiers and as functional devices in evolving optical networks. The functio...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Autor Corporativo: | |
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Singapore ; Hackensack, N.J. :
World Scientific Pub. Co.,
©2013.
|
Edición: | 2nd ed. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- 1. Introduction. 1.1. Historical developments. 1.2. Semiconductor materials. 1.3. Operating principles. 1.4. Applications. 1.5. Book overview. 1.6. Future challenges
- 2. Basic concepts. 2.1. Introduction. 2.2. Optical gain. 2.3. Dielectric waveguide. 2.4. Condition for amplification. 2.5. P-N junction. 2.6. Amplifier characteristics. 2.7. Multiquantum well amplifiers
- 3. Recombination mechanisms and gain. 3.1. Introduction. 3.2. Radiative recombination. 3.3. Non-radiative recombination. 3.4. Quantum well amplifiers. 3.5. Gain in quantum wire (QWR) and quantum dot (QD) structures
- 4. Epitaxial growth and amplifier designs. 4.1. Introduction. 4.2. Material systems. 4.3. Epitaxial growth methods. 4.4. Strained layer epitaxy. 4.5. Selective area growth. 4.6. Amplifier designs. 4.7. Growth of QWR and QD materials
- 5. Low reflectivity facet designs. 5.1. Introduction. 5.2. Low reflectivity coatings. 5.3. Buried facet amplifiers. 5.4. Tilted facet amplifiers. 5.5. Amplified spontaneous emission and optical gain
- 6. Amplifier rate equations and operating characteristics. 6.1. Introduction. 6.2. Amplifier rate equations for pulse propagation. 6.3. Pulse amplification. 6.4. Multichannel amplification. 6.5. Amplifier application in optical transmission systems. 6.6. Amplifier noise. 6.7. Gain dynamics. 6.8. SOA with carrier reservoir
- 7. Photonic integrated circuit using amplifiers. 7.1. Introduction. 7.2. Integrated laser and amplifier. 7.3. Multichannel WDM sources with amplifiers. 7.4. Spot size conversion (SSC). 7.5. Mach-Zehnder interferometer. 7.6. Photoreceiver.
- 8. Functional properties and applications. 8.1. Introduction. 8.2. Four-wave mixing. 8.3. Cross gain modulation. 8.4. Cross phase modulation. 8.5. Wavelength conversion. 8.6. Optical demultiplexing. 8.7. OTDM system applications
- 9. Optical logic operations. 9.1. Introduction. 9.2. Optical logic XOR. 9.3. Optical logic OR. 9.4. Optical logic AND. 9.5. Optical logic INVERT. 9.6. Effect of amplifier noise. 9.7. Optical logic using PSK signals
- 10. Optical logic circuits. 10.1. Introduction. 10.2. Adder. 10.3. Parity checker. 10.4. All-optical pseudo-random binary sequence (PRBS) generator. 10.5. All-optical header processor
- 11. Quantum dot amplifiers. 11.1. Introduction. 11.2. Quantum dot materials growth. 11.3. Quantum dot amplifier performance. 11.4. Gain dynamics. 11.5. Functional performance. 11.6. Optical logic performance
- 12. Reflective semiconductor optical amplifiers (RSOA). 12.1. Introduction. 12.2. RSOA performance. 12.3. Pulse propagation model and gain dynamics. 12.4. RSOA based transmitter
- concept. 12.5. Optical transmission applications
- 13. Two-photon absorption in amplifiers. 13.1. Introduction. 13.2. Two-photon absorption in semiconductors. 13.3. Phase dynamics and other TPA studies. 13.4. Optical logic performance
- 14. Semiconductor optical amplifiers as broadband sources. 14.1. Introduction. 14.2. High power broadband SOA type source. 14.3. Wavelength division multiplexing (WDM) applications. 14.4. Optical coherence tomography source. 14.5. Sensor applications.