Cargando…

Evolutionary optimization algorithms /

"This book is a clear and lucid presentation of Evolutionary Algorithms, with a straightforward, bottom-up approach that provides the reader with a firm grasp of the basic principles of EAs. Covering the theory, history, mathematics, and applications of evolutionary optimization algorithms, thi...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Simon, Dan, 1960- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Chichester : Wiley-Blackwell, 2013.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBOOKCENTRAL_ocn859885568
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |||||||||||
008 130401s2013 enk ob 001 0 eng d
040 |a NLE  |b eng  |e rda  |e pn  |c NLE  |d OCLCO  |d EBLCP  |d U3W  |d OCLCQ  |d OCLCF  |d OCLCA  |d OCL  |d YDX  |d ZCU  |d MERUC  |d ESU  |d ICG  |d OCLCQ  |d DKC  |d OCLCQ  |d OCLCO  |d OCL  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 851316251  |a 979186436 
020 |a 1118659503 
020 |a 9781118659502 
020 |z 9780470937419  |q (hardback) 
020 |z 0470937416  |q (hardback) 
029 1 |a DEBBG  |b BV044189290 
035 |a (OCoLC)859885568  |z (OCoLC)851316251  |z (OCoLC)979186436 
050 4 |a QA76.9.A43  |b S536 2013 
082 0 4 |a 006.3  |2 23 
084 |a MAT008000  |2 bisacsh 
049 |a UAMI 
100 1 |a Simon, Dan,  |d 1960-  |e author.  |1 https://id.oclc.org/worldcat/entity/E39PBJj8VqGX7k4hbBGMKcT8md 
245 1 0 |a Evolutionary optimization algorithms /  |c Dan Simon. 
264 1 |a Chichester :  |b Wiley-Blackwell,  |c 2013. 
300 |a 1 online resource (1 volume) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
505 0 |a Cover; Title Page; Copyright Page; SHORT TABLE OF CONTENTS; DETAILED TABLE OF CONTENTS; Acknowledgments; Acronyms; List of Algorithms; PART I INTRODUCTION TO EVOLUTIONARY OPTIMIZATION; 1 Introduction; 1.1 Terminology; 1.2 Why Another Book on Evolutionary Algorithms?; 1.3 Prerequisites; 1.4 Homework Problems; 1.5 Notation; 1.6 Outline of the Book; 1.7 A Course Based on This Book; 2 Optimization; 2.1 Unconstrained Optimization; 2.2 Constrained Optimization; 2.3 Multi-Objective Optimization; 2.4 Multimodal Optimization; 2.5 Combinatorial Optimization; 2.6 Hill Climbing. 
505 8 |a 2.6.1 Biased Optimization Algorithms2.6.2 The Importance of Monte Carlo Simulations; 2.7 Intelligence; 2.7.1 Adaptation; 2.7.2 Randomness; 2.7.3 Communication; 2.7.4 Feedback; 2.7.5 Exploration and Exploitation; 2.8 Conclusion; Problems; PART II CLASSIC EVOLUTIONARY ALGORITHMS; 3 Genetic Algorithms; 3.1 The History of Genetics; 3.1.1 Charles Darwin; 3.1.2 Gregor Mendel; 3.2 The Science of Genetics; 3.3 The History of Genetic Algorithms; 3.4 A Simple Binary Genetic Algorithm; 3.4.1 A Genetic Algorithm for Robot Design; 3.4.2 Selection and Crossover; 3.4.3 Mutation; 3.4.4 GA Summary. 
505 8 |a 3.4.5 GA Tuning Parameters and Examples3.5 A Simple Continuous Genetic Algorithm; 3.6 Conclusion; Problems; 4 Mathematical Models of Genetic Algorithms; 4.1 Schema Theory; 4.2 Markov Chains; 4.3 Markov Model Notation for Evolutionary Algorithms; 4.4 Markov Models of Genetic Algorithms; 4.4.1 Selection; 4.4.2 Mutation; 4.4.3 Crossover; 4.5 Dynamic System Models of Genetic Algorithms; 4.5.1 Selection; 4.5.2 Mutation; 4.5.3 Crossover; 4.6 Conclusion; Problems; 5 Evolutionary Programming; 5.1 Continuous Evolutionary Programming; 5.2 Finite State Machine Optimization. 
505 8 |a 7.2.6 Genetic Programming Parameters7.3 Genetic Programming for Minimum Time Control; 7.4 Genetic Programming Bloat; 7.5 Evolving Entities other than Computer Programs; 7.6 Mathematical Analysis of Genetic Programming; 7.6.1 Definitions and Notation; 7.6.2 Selection and Crossover; 7.6.3 Mutation and Final Results; 7.7 Conclusion; Problems; 8 Evolutionary Algorithm Variations; 8.1 Initialization; 8.2 Convergence Criteria; 8.3 Problem Representation Using Gray Coding; 8.4 Elitism; 8.5 Steady-State and Generational Algorithms; 8.6 Population Diversity; 8.6.1 Duplicate Individuals. 
520 |a "This book is a clear and lucid presentation of Evolutionary Algorithms, with a straightforward, bottom-up approach that provides the reader with a firm grasp of the basic principles of EAs. Covering the theory, history, mathematics, and applications of evolutionary optimization algorithms, this timely and practical book offers lengthy examples, a companion website, MATLAB code, and a Solutions Manual--making it perfect for advanced undergraduates, graduates, and practicing engineers involved in engineering and computer science"--  |c Provided by publisher. 
520 |a "Provides a straightforward, bottom-up approach that assists the reader in obtaining a clear (but theoretically rigorous) understanding of Evolutionary Algorithms, with an emphasis on implementation rather than models"--  |c Provided by publisher. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Evolutionary computation. 
650 0 |a Computer algorithms. 
650 0 |a Natural computation. 
650 0 |a Algorithms. 
650 6 |a Réseaux neuronaux à structure évolutive. 
650 6 |a Algorithmes. 
650 6 |a Calcul naturel. 
650 7 |a algorithms.  |2 aat 
650 7 |a MATHEMATICS  |x Discrete Mathematics.  |2 bisacsh 
650 7 |a Algorithms  |2 fast 
650 7 |a Natural computation  |2 fast 
650 7 |a Computer algorithms  |2 fast 
650 7 |a Evolutionary computation  |2 fast 
758 |i has work:  |a Evolutionary optimization algorithms (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCG6yybdvpxv9YGvt97xjvd  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 |c Hardback  |z 9780470937419 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1216196  |z Texto completo 
938 |a EBL - Ebook Library  |b EBLB  |n EBL1216196 
938 |a YBP Library Services  |b YANK  |n 10791345 
994 |a 92  |b IZTAP