Cargando…

Swarm intelligence and bio-inspired computation : theory and applications /

Swarm Intelligence and bio-inspired computation have become increasing popular in the last two decades. Bio-inspired algorithms such as ant colony algorithms, bat algorithms, bee algorithms, firefly algorithms, cuckoo search and particle swarm optimization have been applied in almost every area of s...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Yang, Xin-She (Editor ), Cui, Zhihua (Editor ), Xiap, Renbin (Editor ), Gandomi, Amir Hossein (Editor ), Karamanoglu, Mehmet (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Oxford : Elsevier, 2013.
Colección:Elsevier insights.
Temas:
Acceso en línea:Texto completo
Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBOOKCENTRAL_ocn859885344
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |||||||||||
008 130227s2013 enka ob 000 0 eng d
040 |a NLE  |b eng  |e rda  |e pn  |c NLE  |d B24X7  |d COO  |d OCLCO  |d CDX  |d UMI  |d REB  |d DEBBG  |d DEBSZ  |d OCLCQ  |d OCLCF  |d EBLCP  |d E7B  |d N$T  |d GGVRL  |d OCLCA  |d OCLCQ  |d OCL  |d ICA  |d AGLDB  |d K6U  |d ZCU  |d MERUC  |d OCLCQ  |d U3W  |d VTS  |d COCUF  |d CEF  |d ICG  |d INT  |d OCLCQ  |d TKN  |d STF  |d OCLCQ  |d DKC  |d AU@  |d OCLCQ  |d M8D  |d OCLCQ  |d AJS  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
066 |c (S 
019 |a 849921475  |a 850168251  |a 868231732 
020 |a 0124051774 
020 |a 9780124051775 
020 |z 9780124051638 
020 |z 0124051634 
029 1 |a AU@  |b 000053295373 
029 1 |a AU@  |b 000059642788 
029 1 |a AU@  |b 000062469906 
029 1 |a DEBBG  |b BV041778363 
029 1 |a DEBBG  |b BV043957912 
029 1 |a DEBBG  |b BV044175916 
029 1 |a DEBSZ  |b 404328512 
029 1 |a DEBSZ  |b 431435804 
029 1 |a DEBSZ  |b 481276106 
029 1 |a GBVCP  |b 882722913 
029 1 |a NLGGC  |b 363380167 
035 |a (OCoLC)859885344  |z (OCoLC)849921475  |z (OCoLC)850168251  |z (OCoLC)868231732 
050 4 |a Q337.3  |b .S925 2013eb 
072 7 |a COM  |x 005030  |2 bisacsh 
072 7 |a COM  |x 004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
049 |a UAMI 
245 0 0 |a Swarm intelligence and bio-inspired computation :  |b theory and applications /  |c edited by Xin-She Yang, Zhihua Cui, Renbin Xiao, Amir Hossein Gandomi, Mehmet Karamanoglu. 
264 1 |a Oxford :  |b Elsevier,  |c 2013. 
300 |a 1 online resource (xxii, 422 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Elsevier insights 
504 |a Includes bibliographical references. 
505 0 |a pt. 1. Theoretical aspects of swarm intelligence and bio-inspired computing -- pt. 2. Applications and case studies. 
520 |a Swarm Intelligence and bio-inspired computation have become increasing popular in the last two decades. Bio-inspired algorithms such as ant colony algorithms, bat algorithms, bee algorithms, firefly algorithms, cuckoo search and particle swarm optimization have been applied in almost every area of science and engineering with a dramatic increase of number of relevant publications. This book reviews the latest developments in swarm intelligence and bio-inspired computation from both the theory and application side, providing a complete resource that analyzes and discusses the latest and futu. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Swarm intelligence. 
650 0 |a Natural computation. 
650 0 |a Algorithms. 
650 2 |a Algorithms 
650 6 |a Calcul naturel. 
650 6 |a Algorithmes. 
650 7 |a algorithms.  |2 aat 
650 7 |a COMPUTERS  |x Enterprise Applications  |x Business Intelligence Tools.  |2 bisacsh 
650 7 |a COMPUTERS  |x Intelligence (AI) & Semantics.  |2 bisacsh 
650 7 |a Algorithms  |2 fast 
650 7 |a Natural computation  |2 fast 
650 7 |a Swarm intelligence  |2 fast 
700 1 |a Yang, Xin-She,  |e editor. 
700 1 |a Cui, Zhihua,  |e editor. 
700 1 |a Xiap, Renbin,  |e editor. 
700 1 |a Gandomi, Amir Hossein,  |e editor. 
700 1 |a Karamanoglu, Mehmet,  |e editor. 
758 |i has work:  |a Swarm intelligence and bio-inspired computation (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCH8bqrYGPf9Y86gkPRVBKb  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 |c Hardback  |z 9780124051638 
830 0 |a Elsevier insights. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1207291  |z Texto completo 
856 4 0 |u https://learning.oreilly.com/library/view/~/9780124051638/?ar  |z Texto completo 
880 8 |6 505-00/(S  |a 5.2.2.3 Time-Dependent Response Threshold Model -- 5.2.3 Some Analysis -- 5.3 Modeling and Simulation of Ant Colony's Labor Division with Multitask -- 5.3.1 Background Analysis -- 5.3.2 Design and Implementation of Ant Colony's Labor Division Model with Multitask -- 5.3.2.1 Design of Ant Colony's Labor Division Model with Multitask -- Environmental Stimuli -- Agent Attributes -- Probability of Participation and Exit -- Simulation Principle -- 5.3.2.2 Implementation of Ant Colony's Labor Division Model with Multitask -- 5.3.3 Supply Chain Virtual Enterprise Simulation -- 5.3.3.1 Simulation Example and Parameter Settings -- 5.3.3.2 Simulation Results and Analysis -- 5.3.4 Virtual Organization Enterprise Simulation -- 5.3.4.1 Simulation Example and Parameter Settings -- 5.3.4.2 Simulation Results and Analysis -- 5.3.5 Discussion -- 5.4 Modeling and Simulation of Ant Colony's Labor Division with Multistate -- 5.4.1 Background Analysis -- 5.4.2 Design and Implementation of Ant Colony's Labor Division Model with Multistate -- 5.4.2.1 Design of Ant Colony's Labor Division Model with Multistate -- Stimulus Values in Multitask Environment -- Relative Environment Stimulus Value sαβ and Relative Threshold θαβ -- Agent State Transformation -- 5.4.2.2 Implementation of Ant Colony's Labor Division Model with Multistate -- 5.4.3 Simulation Example of Ant Colony's Labor Division Model with Multistate -- 5.4.3.1 Simulation and Experiment Environment -- 5.4.3.2 Parameters of the Simulation Model -- 5.4.3.3 Simulation Results -- 5.4.3.4 Analysis of Results -- 5.5 Modeling and Simulation of Ant Colony's Labor Division with Multiconstraint -- 5.5.1 Background Analysis -- 5.5.2 Design and Implementation of Ant Colony's Labor Division Model with Multiconstraint -- 5.5.2.1 Design of Ant Colony's Labor Division Model with Multiconstraint. 
938 |a Books 24x7  |b B247  |n bks00054048 
938 |a Coutts Information Services  |b COUT  |n 25507109 
938 |a EBL - Ebook Library  |b EBLB  |n EBL1207291 
938 |a ebrary  |b EBRY  |n ebr10704769 
938 |a EBSCOhost  |b EBSC  |n 486519 
938 |a Cengage Learning  |b GVRL  |n GVRL6ZOW 
994 |a 92  |b IZTAP