Cable-stayed bridges : 40 years of experience worldwide /
The need for large-scale bridges is constantly growing due to the enormous infrastructure development around the world. Since the 1970s many of them have been cable-stayed bridges. In 1975 the largest span length was 404 m, in 1995 it increased to 856 m, and today it is 1088 m. Thus the economically...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Alemán |
Publicado: |
Zeuthen :
Ernst & Sohn,
2012.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover; Half title page; Title page; Copyright page; Dedication; Introduction; Acknowledgement; The Author; Table of contents; 1 Introduction; 1.1 Design fundamentals; 1.1.1 General; 1.1.2 Overall system; 1.1.2.1 Cable arrangement; 1.1.2.2 Cable stiffness; 1.1.2.3 Geometry; 1.1.2.4 Support conditions; 1.1.3 Tower shapes; 1.1.3.1 Two outer cable planes; 1.1.3.2 One central cable plane; 1.1.3.3 Spread central cable planes; 1.1.4 Beam cross-sections; 1.1.4.1 Steel cross-sections; 1.1.4.2 Concrete cross-sections; 1.1.4.3 Composite cross-sections; 1.1.4.4 Hybrid beams (steel/concrete).
- 1.1.4.5 Double deck cross-section1.1.5 Stay cables; 1.1.5.1 Systems; 1.1.5.2 Cable anchorages; 1.2 Aesthetic guidelines for bridge design; 1.2.1 Introduction; 1.2.2 Aesthetic guidelines; 1.2.2.1 Guideline 1: Clear structural system; 1.2.2.2 Guideline 2: Good proportions; 1.2.2.3 Guideline 3: Good order; 1.2.2.4 Guideline 4: Integration into the environment; 1.2.2.5 Guideline 5: Choice of material; 1.2.2.6 Guideline 6: Coloring; 1.2.2.7 Guideline 7: Space above the bridge; 1.2.2.8 Guideline 8: Recognizable flow of forces; 1.2.2.9 Guideline 9: Lighting; 1.2.2.10 Guideline 10: Simplicity.
- 1.2.3 Collaboration2 The development of cable-stayed bridges; 2.1 The precursors of cable-stayed bridges; 2.1.1 Introduction; 2.1.2 Historical development; 2.1.2.1 Historical designs; 2.1.2.2 First examples and failures; 2.1.2.3 John Roebling and stiffened suspension bridges; 2.1.2.4 Transporter bridges; 2.1.2.5 Approaching the modern form; 2.2 Steel cable-stayed bridges; 2.2.1 Introduction; 2.2.2 Beginnings; 2.2.3 The Düsseldorf Bridge Family; 2.2.4 Further Rhine river bridges; 2.2.5 Special steel cable-stayed bridges; 2.2.6 Cable-stayed bridges with record spans.
- 2.3 Concrete cable-stayed bridges2.3.1 General; 2.3.2 Development of concrete cable-stayed bridges; 2.3.3 Bridges with concrete stays; 2.3.3.1 Riccardo Morandi's bridges; 2.3.3.2 Later examples; 2.3.3.3 Bridges with concrete walls; 2.3.4 Cable-stayed bridges with thin concrete beams; 2.3.5 Record spans; 2.4 Composite cable-stayed bridges; 2.4.1 General; 2.4.2 Cross-sections; 2.4.3 Special details; 2.4.4 Economic span lengths; 2.4.5 Beginnings; 2.4.6 Record spans; 2.4.7 Latest examples; 2.5 Special systems of cable-stayed bridges; 2.5.1 Series of cable-stayed bridges; 2.5.1.1 Load transfer.
- 2.5.1.2 Intermediate piers2.5.1.3 Stiff towers; 2.5.1.4 Stayed towers; 2.5.1.5 Frames; 2.5.1.6 Accommodation of longitudinal deformations; 2.5.1.7 Examples; 2.5.2 Stayed beams; 2.5.2.1 Stayed from underneath; 2.5.2.2 Stayed from above (extradosed); 2.5.3 Cable-stayed pedestrian bridges; 3 Stay cables; 3.1 General; 3.2 Locked coil ropes; 3.2.1 System; 3.2.2 Fabrication; 3.2.3 Modern corrosion protection systems; 3.2.3.1 General; 3.2.3.2 Galvanizing of the wires; 3.2.3.3 Filling; 3.2.3.4 Paint; 3.2.4 Inspection and maintenance; 3.2.5 Damage; 3.2.5.1 Köhlbrand Bridge.