Operator theory : nonclassical problems /
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Utrecht ; Boston :
VSP,
2002.
|
Colección: | Inverse and ill-posed problems series.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Chapter 1. Indefinite inner product spaces. Linear operators. Interpolation
- 1. Indefinite inner product spaces
- 1.1. Definitions
- 1.2. Krein spaces
- 1.3. The Gram operator. W-spaces
- 1.4. J-orthogonal complements. Projective completeness
- 1.5. J-orthonormalized systems
- 2. The basic classes of operators in Krein spaces
- 2.1. J-dissipative operators
- 2.2. J-selfadjoint operators
- 3. Interpolation of Banach and Hilbert spaces and applications
- 3.1. Preliminaries
- 3.2. Continuity of some functional in a Hilbert scale
- 3.3. Separation of the spectrum of an unbounded operator3.4. Interpolation properties of bases
- 4. The existence of maximal semidefinite invariant subspaces for J-dissipative operators
- 5. First order equations. Decomposition of a solution
- 5.1. Function spaces
- 5.2. The Cauchy problem
- 5.3. Auxiliary definitions. Some properties of imaginary powers of operators
- 5.4. Solvability of the Cauchy problem in the original Banach space
- 5.5. Adjoint problems
- 5.6. Arbitrary operators. Phase spaces
- 5.7. Remarks and examples
- Chapter 2. Spectral theory for linear selfadjoint pencils1. Examples
- 1.1. Selfadjoint pencils
- 1.2. Elliptic eigenvalue problems with indefinite weight function
- 2. Basic assumptions. The structure of root subspaces
- 3. The Riesz basis property. Invariant subspaces
- 3.1. Basis property
- 3.2. Invariant subspaces. Some applications
- 4. Sufficient conditions
- Chapter 3. Elliptic eigenvalue problems with an indefinite weight function
- 1. Auxiliary function spaces. Interpolation
- 1.1. Definitions
- 1.2. Interpolation of weighted Sobolev spaces
- 1.3. Inequalities of the Hardy type2. Preliminaries. Basic assumptions
- 2.1. Variational statement
- 2.2. Elliptic problems
- 3. Basisness theorems
- 3.1. The general case
- 3.2. The one-dimensional case
- 4. Examples and counterexamples
- Chapter 4. Operator-differential equations
- 1. Generalized solutions. Positive definite case
- 1.1. Preliminaries
- 1.2. Uniqueness and existence theorems
- 2. Degenerate case
- 2.1. Preliminaries
- 2.2. Solvability theorems. The case of a bounded interval
- 2.3. Solvability theorems. The case of the interval (0, 8)2.4. Smoothness of solutions. Orthogonality conditions
- 2.5. The periodic problem. Linear inverse problems
- 3. The Fourier method
- 3.1. Representation of solutions. First order equations
- 3.2. Some problems for the second order equations
- 4. Some applications to partial differential equations
- 4.1. Higher order parabolic equations with changing time direction
- 4.2. Second order parabolic equations with changing time direction
- 4.3. Orthogonality conditions. Parabolic equations