Cargando…

Statistical analysis in forensic science : evidential value of multivariate physicochemical data /

"A practical guide for determining the evidential value of physicochemical data. Microtraces of various materials (e.g. glass, paint, fibres, and petroleum products) are routinely subjected to physicochemical examination by forensic experts, whose role is to evaluate such physicochemical data i...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Zadora, Grzegorz, Martyna, Agnieszka, Ramos, Daniel, Aitken, Colin
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Chichester, West Sussex : John Wiley & Sons Inc., ©2014.
Temas:
Acceso en línea:Texto completo
Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBOOKCENTRAL_ocn858778356
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |||||||||||
008 130920s2014 enk ob 001 0 eng
010 |z  2013031698 
040 |a DLC  |b eng  |e pn  |c DLC  |d YDX  |d N$T  |d YDXCP  |d QGK  |d CUX  |d OCLCF  |d UMI  |d E7B  |d DEBSZ  |d DEBBG  |d COO  |d OCLCQ  |d MERUC  |d COCUF  |d MOR  |d PIFAG  |d ZCU  |d NRC  |d OCLCQ  |d U3W  |d STF  |d CEF  |d ICG  |d INT  |d VT2  |d AU@  |d OCLCO  |d OCLCQ  |d OCLCA  |d TKN  |d OCLCQ  |d UAB  |d DKC  |d OCLCO  |d OCLCQ  |d OCLCO  |d UKAHL  |d OL$  |d OCLCQ  |d OCLCO  |d ERF  |d UHL  |d UKBTH  |d OCLCA  |d TUHNV  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
066 |c (S 
019 |a 905245060  |a 905746889  |a 961589109  |a 962565012  |a 1112555128  |a 1113702032  |a 1113731352  |a 1148133562  |a 1259126164 
020 |a 9781118763186  |q (ePub) 
020 |a 1118763181  |q (ePub) 
020 |a 9781118763179  |q (Adobe PDF) 
020 |a 1118763173  |q (Adobe PDF) 
020 |a 130611859X  |q (electronic bk.) 
020 |a 9781306118590  |q (electronic bk.) 
020 |a 9781118763155  |q (electronic bk.) 
020 |a 1118763157  |q (electronic bk.) 
020 |z 9780470972106  |q (cloth) 
020 |z 0470972106  |q (cloth) 
024 8 |a 9781118763186 
029 1 |a DEBBG  |b BV042682890 
029 1 |a DEBBG  |b BV042794997 
029 1 |a DEBBG  |b BV044064691 
029 1 |a DEBSZ  |b 41990056X 
029 1 |a DEBSZ  |b 431562822 
029 1 |a DEBSZ  |b 445524529 
029 1 |a DEBSZ  |b 446580910 
029 1 |a DEBSZ  |b 449398099 
029 1 |a NLGGC  |b 370300750 
029 1 |a AU@  |b 000067092530 
035 |a (OCoLC)858778356  |z (OCoLC)905245060  |z (OCoLC)905746889  |z (OCoLC)961589109  |z (OCoLC)962565012  |z (OCoLC)1112555128  |z (OCoLC)1113702032  |z (OCoLC)1113731352  |z (OCoLC)1148133562  |z (OCoLC)1259126164 
037 |a CL0500000570  |b Safari Books Online 
042 |a pcc 
050 0 0 |a RA1057 
060 4 |a W 750 
072 7 |a MED  |x 030000  |2 bisacsh 
072 7 |a MED  |x 076000  |2 bisacsh 
072 7 |a MED  |x 078000  |2 bisacsh 
082 0 4 |a 614/.12  |2 23 
049 |a UAMI 
245 0 0 |a Statistical analysis in forensic science :  |b evidential value of multivariate physicochemical data /  |c Grzegorz Zadora, Agnieszka Martyna, Daniel Ramos, Colin Aitken. 
260 |a Chichester, West Sussex :  |b John Wiley & Sons Inc.,  |c ©2014. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record and CIP data provided by publisher. 
505 0 |6 880-01  |a Physicochemical data obtained in forensic science laboratories -- Evaluation of evidence in the form of physicochemical data -- Continuous data -- Likelihood ratio models for comparison problems -- Likelihood ratio models for classification problems -- Performance of likelihood ratio methods. 
520 |a "A practical guide for determining the evidential value of physicochemical data. Microtraces of various materials (e.g. glass, paint, fibres, and petroleum products) are routinely subjected to physicochemical examination by forensic experts, whose role is to evaluate such physicochemical data in the context of the prosecution and defence propositions. Such examinations return various kinds of information, including quantitative data. From the forensic point of view, the most suitable way to evaluate evidence is the likelihood ratio. This book provides a collection of recent approaches to the determination of likelihood ratios and describes suitable software, with documentation and examples of their use in practice. The statistical computing and graphics software environment R, pre-computed Bayesian networks using Hugin Researcher and a new package, calcuLatoR, for the computation of likelihood ratios are all explored."--Publisher info. 
542 |f Copyright © John Wiley & Sons 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Chemistry, Forensic. 
650 0 |a Forensic statistics. 
650 0 |a Chemometrics. 
650 1 2 |a Forensic Sciences  |x statistics & numerical data 
650 2 2 |a Chemistry Techniques, Analytical  |x statistics & numerical data 
650 2 2 |a Data Interpretation, Statistical 
650 6 |a Chimie légale. 
650 6 |a Statistiques légales. 
650 6 |a Chimiométrie. 
650 7 |a MEDICAL  |x Forensic Medicine.  |2 bisacsh 
650 7 |a MEDICAL  |x Preventive Medicine.  |2 bisacsh 
650 7 |a MEDICAL  |x Public Health.  |2 bisacsh 
650 7 |a Chemistry, Forensic  |2 fast 
650 7 |a Chemometrics  |2 fast 
650 7 |a Forensic statistics  |2 fast 
700 1 |a Zadora, Grzegorz. 
700 1 |a Martyna, Agnieszka. 
700 1 |a Ramos, Daniel. 
700 1 |a Aitken, Colin. 
758 |i has work:  |a Statistical analysis in forensic science (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGw4jGm9tq88dCFDKYkrWP  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |t Statistical analysis in forensic science.  |d Chichester, West Sussex : John Wiley & Sons Inc., ©2014  |z 9780470972106  |w (DLC) 2013031698 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1557286  |z Texto completo 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781118763186/?ar  |z Texto completo 
880 0 0 |6 505-01/(S  |g Machine generated contents note:  |g 1.  |t Physicochemical data obtained in forensic science laboratories --  |g 1.1.  |t Introduction --  |g 1.2.  |t Glass --  |g 1.2.1.  |t SEM-EDX technique --  |g 1.2.2.  |t GRIM technique --  |g 1.3.  |t Flammable liquids: ATD-GC/MS technique --  |g 1.4.  |t Car paints: Py-GC/MS technique --  |g 1.5.  |t Fibres and inks: MSP-DAD technique --  |t References --  |g 2.  |t Evaluation of evidence in the form of physicochemical data --  |g 2.1.  |t Introduction --  |g 2.2.  |t Comparison problem --  |g 2.2.1.  |t Two-stage approach --  |g 2.2.2.  |t Likelihood ratio approach --  |g 2.2.3.  |t Difference between an application of two-stage approach and likelihood ratio approach --  |g 2.3.  |t Classification problem --  |g 2.3.1.  |t Chemometric approach --  |g 2.3.2.  |t Likelihood ratio approach --  |g 2.4.  |t Likelihood ratio and Bayes' theorem --  |t References --  |g 3.  |t Continuous data --  |g 3.1.  |t Introduction --  |g 3.2.  |t Data transformations --  |g 3.3.  |t Descriptive statistics --  |g 3.3.1.  |t Measures of location --  |g 3.3.2.  |t Dispersion: Variance estimation --  |g 3.3.3.  |t Data distribution --  |g 3.3.4.  |t Correlation --  |g 3.3.5.  |t Continuous probability distributions --  |g 3.4.  |t Hypothesis testing --  |g 3.4.1.  |t Introduction --  |g 3.4.2.  |t Hypothesis test for a population mean for samples with known variance σ2 from a normal distribution --  |g 3.4.3.  |t Hypothesis test for a population mean for small samples with unknown variance σ2 from a normal distribution --  |g 3.4.4.  |t Relation between tests and confidence intervals --  |g 3.4.5.  |t Hypothesis test based on small samples for a difference in the means of two independent populations with unknown variances from normal distributions --  |g 3.4.6.  |t Paired comparisons --  |g 3.4.7.  |t Hotelling's T2 test --  |g 3.4.8.  |t Significance test for correlation coefficient --  |g 3.5.  |t Analysis of variance --  |g 3.5.1.  |t Principles of ANOVA --  |g 3.5.2.  |t Feature selection with application of ANOVA --  |g 3.5.3.  |t Testing of the equality of variances --  |g 3.6.  |t Cluster analysis --  |g 3.6.1.  |t Similarity measurements --  |g 3.6.2.  |t Hierarchical cluster analysis --  |g 3.7.  |t Dimensionality reduction --  |g 3.7.1.  |t Principal component analysis --  |g 3.7.2.  |t Graphical models --  |t References --  |g 4.  |t Likelihood ratio models for comparison problems --  |g 4.1.  |t Introduction --  |g 4.2.  |t Normal between-object distribution --  |g 4.2.1.  |t Multivariate data --  |g 4.2.2.  |t Univariate data --  |g 4.3.  |t Between-object distribution modelled by kernel density estimation --  |g 4.3.1.  |t Multivariate data --  |g 4.3.2.  |t Univariate data --  |g 4.4.  |t Examples --  |g 4.4.1.  |t Univariate research data -- normal between-object distribution -- R software --  |g 4.4.2.  |t Univariate casework data -- normal between-object distribution -- Bayesian network --  |g 4.4.3.  |t Univariate research data -- kernel density estimation -- R software --  |g 4.4.4.  |t Univariate casework data -- kernel density estimation -- calcuLatoR software --  |g 4.4.5.  |t Multivariate research data -- normal between-object distribution -- R software --  |g 4.4.6.  |t Multivariate research data -- kernel density estimation procedure -- R software --  |g 4.4.7.  |t Multivariate casework data -- kernel density estimation -- R software --  |g 4.5.  |t R Software --  |g 4.5.1.  |t Routines for casework applications --  |g 4.5.2.  |t Routines for research applications --  |t References --  |g 5.  |t Likelihood ratio models for classification problems --  |g 5.1.  |t Introduction --  |g 5.2.  |t Normal between-object distribution --  |g 5.2.1.  |t Multivariate data --  |g 5.2.2.  |t Univariate data --  |g 5.2.3.  |t One-level models --  |g 5.3.  |t Between-object distribution modelled by kernel density estimation --  |g 5.3.1.  |t Multivariate data --  |g 5.3.2.  |t Univariate data --  |g 5.3.3.  |t One-level models --  |g 5.4.  |t Examples --  |g 5.4.1.  |t Univariate casework data -- normal between-object distribution -- Bayesian network --  |g 5.4.2.  |t Univariate research data -- kernel density estimation procedure -- R software --  |g 5.4.3.  |t Multivariate research data -- kernel density estimation -- R software --  |g 5.4.4.  |t Multivariate casework data -- kernel density estimation -- R software --  |g 5.5.  |t R software --  |g 5.5.1.  |t Routines for casework applications --  |g 5.5.2.  |t Routines for research applications --  |t References --  |g 6.  |t Performance of likelihood ratio methods --  |g 6.1.  |t Introduction --  |g 6.2.  |t Empirical measurement of the performance of likelihood ratios --  |g 6.3.  |t Histograms and Tippett plots --  |g 6.4.  |t Measuring discriminating power --  |g 6.4.1.  |t False positive and false negative rates --  |g 6.4.2.  |t Discriminating power: A definition --  |g 6.4.3.  |t Measuring discriminating power with DET curves --  |g 6.4.4.  |t Is discriminating power enough--  |g 6.5.  |t Accuracy equals discriminating power plus calibration: Empirical cross-entropy plots --  |g 6.5.1.  |t Accuracy in a classical example: Weather forecasting --  |g 6.5.2.  |t Calibration --  |g 6.5.3.  |t Adaptation to forensic inference using likelihood ratios --  |g 6.6.  |t Comparison of the performance of different methods for LR computation --  |g 6.6.1.  |t MSP-DAD data from comparison of inks --  |g 6.6.2.  |t Py-GC/MS data from comparison of car paints --  |g 6.6.3.  |t SEM-EDX data for classification of glass objects --  |g 6.7.  |t Conclusions: What to measure, and how --  |g 6.8.  |t Software --  |t References --  |g Appendix  |t A Probability --  |g A.1.  |t Laws of probability --  |g A.2.  |t Bayes' theorem and the likelihood ratio --  |g A.3.  |t Probability distributions for discrete data --  |g A.4.  |t Probability distributions for continuous data --  |t References --  |g Appendix B  |t Matrices: An introduction to matrix algebra --  |g B.1.  |t Multiplication by a constant --  |g B.2.  |t Adding matrices --  |g B.3.  |t Multiplying matrices --  |g B.4.  |t Matrix transposition --  |g B.5.  |t Determinant of a matrix --  |g B.6.  |t Matrix inversion --  |g B.7.  |t Matrix equations --  |g B.8.  |t Eigenvectors and eigenvalues --  |t Reference --  |g Appendix C  |t Pool adjacent violators algorithm --  |t References --  |g Appendix D  |t Introduction to R software --  |g D.1.  |t Becoming familiar with R --  |g D.2.  |t Basic mathematical operations in R --  |g D.2.1.  |t Vector algebra --  |g D.2.2.  |t Matrix algebra --  |g D.3.  |t Data input --  |g D.4.  |t Functions in R --  |g D.5.  |t Dereferencing --  |g D.6.  |t Basic statistical functions --  |g D.7.  |t Graphics with R --  |g D.7.1.  |t Box-plots --  |g D.7.2.  |t Q-Q plots --  |g D.7.3.  |t Normal distribution --  |g D.7.4.  |t Histograms --  |g D.7.5.  |t Kernel density estimation --  |g D.7.6.  |t Correlation between variables --  |g D.8.  |t Saving data --  |g D.9.  |t R codes used in Chapters 4 and 5 --  |g D.9.1.  |t Comparison problems in casework studies --  |g D.9.2.  |t Comparison problems in research studies --  |g D.9.3.  |t Classification problems in casework studies --  |g D.9.4.  |t Classification problems in research studies --  |g D.10.  |t Evaluating the performance of LR models --  |g D.10.1.  |t Histograms --  |g D.10.2.  |t Tippett plots --  |g D.10.3.  |t DET plots --  |g D.10.4.  |t ECE plots --  |t Reference --  |g Appendix E  |t Bayesian network models --  |g E.1.  |t Introduction to Bayesian networks --  |g E.2.  |t Introduction to Hugin Researcher[™] software --  |g E.2.1.  |t Basic functions --  |g E.2.2.  |t Creating a new Bayesian network --  |g E.2.3.  |t Calculations --  |t References --  |g Appendix F  |t Introduction to calcuLatoR software --  |g F.1.  |t Introduction --  |g F.2.  |t Manual --  |t Reference. 
938 |a YBP Library Services  |b YANK  |n 12673311 
938 |a YBP Library Services  |b YANK  |n 11348053 
938 |a YBP Library Services  |b YANK  |n 11072534 
938 |a EBSCOhost  |b EBSC  |n 662734 
938 |a ebrary  |b EBRY  |n ebr10804687 
938 |a Askews and Holts Library Services  |b ASKH  |n AH25960793 
938 |a Askews and Holts Library Services  |b ASKH  |n AH25960794 
938 |a Internet Archive  |b INAR  |n isbn_9780470972106 
994 |a 92  |b IZTAP