Cargando…

Nanobeam X-Ray scattering : probing matter at the nanoscale /

A comprehensive overview of the possibilities and potential of X-ray scattering using nanofocused beams for probing matter at the nanoscale, including guidance on the design of nanobeam experiments. The monograph discusses various sources, including free electron lasers, synchrotron radiation and ot...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Stangl, Julian (Autor), Mocuta, Cristian (Autor), Chamard, Virginie, 1974- (Autor), Carbone, Dina (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Weinheim, Germany : Wiley-VCH, [2014]
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Nanobeam X-Ray Scattering; Contents; Foreword; Preface; 1 Introduction; 1.1 X-ray Interaction with Matter; 1.1.1 Transmission of X-ray; 1.1.2 Diffraction of X-rays; 1.1.3 X-ray Elemental Sensitivity; 1.2 Diffraction at Different Lengthscales and Real-Space Resolution; 1.2.1 How to Produce an X-ray Nanobeam; 1.2.2 Experiments with Nanobeams; 1.2.3 Coherence Properties of Small Beams; 1.2.4 Side Issues?; 1.3 Future Developments; 2 X-ray Diffraction Principles; 2.1 A Brief Introduction to Diffraction Theory; 2.1.1 Interference of X-ray Waves; 2.2 Kinematic X-ray Diffraction Theory.
  • 2.2.1 The Structure Factor; 2.2.2 The Form Factor; 2.2.3 Reciprocal Lattice of Nanostructures; 2.2.4 The Phase Problem; 2.3 Reflectivity; 2.4 Properties of X-ray Beams; 2.5 A Note on Coherence; 2.5.1 Longitudinal Coherence and Wavelength Distribution; 2.5.2 Longitudinal Coherence Length; 2.5.3 Transverse Coherence and Thermal Sources; 2.5.4 Transverse Coherence Length; 2.6 X-ray Sources; 2.7 Diffraction Measurement: How to Access q in a Real Experiment; 2.7.1 Diffraction Geometries; 2.7.2 Lengthscales; 3 X-ray Focusing Elements Characterization; 3.1 Introduction and Context.
  • 3.2 Refractive X-ray Lenses; 3.2.1 Characterization of Focusing Elements; 3.2.2 Spherical Refractive X-ray Lenses; 3.2.3 Parabolic Compound Refractive Lenses (CRL); 3.2.4 Kinoform Lenses; 3.2.5 Characteristics of the Refractive Lenses; 3.3 X-ray Mirrors. Reflection of X-rays at Surfaces; 3.3.1 Reflective X-ray Optics (Kirkpatrick-Baez Mirrors); 3.3.2 Capillaries; 3.3.3 Waveguides (Resonators); 3.3.4 Other Reflective Optical Elements; 3.4 Diffractive X-ray Optics; 3.4.1 Fresnel Zone Plates; 3.4.2 Hologram of a Point Object; 3.4.3 Quantities Characterizing a Binary Zone Plate.
  • 3.4.4 Multilevel Zone Plate; 3.4.5 Getting a Clean and Intense Focused Beam with ZPs; 3.4.6 Bragg-Fresnel Lenses; 3.4.7 Multilayer Laue Lenses; 3.4.8 Photon Sieves; 3.4.9 Beam Compressors; 3.5 Other X-ray Optics; 3.6 Measuring the Size of the X-ray Focused Spot; 3.7 Conclusion; 4 Scattering Experiments Using Nanobeams; 4.1 From the Ensemble Average Approach towards the Single Nanostructure Study; 4.1.1 A Motivation for the Use of Small X-ray Beams; 4.1.2 Required Focused Beam Properties; 4.2 Scanning X-ray Diffraction Microscopy; 4.3 Finite Element Based Analysis of Diffraction Data.
  • 4.4 Single Structure Inside a Device; 4.5 Examples from Biology; 4.6 Recent Experiments: The Current Limits; 4.6.1 Strain Distribution in Nanoscale Ridges; 4.6.2; Between Single Structure and Ensemble Average; 4.7 Outlook; 4.7.1 Experimental Developments; 5 Nanobeam Diffraction Setups; 5.1 Introduction; 5.2 Typical X-ray Diffraction Setup; 5.3 Nanodiffraction Setup Requirements; 5.3.1 Diffractometer; 5.3.2 Restriction of Setup; 5.3.3 Stability: How to Keep the Beam on the Sample; 5.3.4 Beating Drifts: More Solutions; 5.4 Nanobeam and Coherence Setup.