Loading…

Translational Genomics for Crop Breeding : Volume 1 - Biotic Stress.

Genomic Applications for Crop Breeding: Biotic Stress is the first of two volumes looking at the latest advances in genomic applications to crop breeding. This volume focuses on genomic-assisted advances for improving economically important crops against biotic stressors, such as viruses, fungi, nem...

Full description

Bibliographic Details
Call Number:Libro Electrónico
Main Author: Varshney, Rajeev
Format: Electronic eBook
Language:Inglés
Published: Wiley-Blackwell, 2013.
Subjects:
Online Access:Texto completo
Table of Contents:
  • Translational Genomics for Crop Breeding, Volume I: Biotic Stress; Contents; Foreword; Preface; Chapter 1 Translational Genomics in Crop Breeding for Biotic Stress Resistance: An Introduction; Introduction; Improving Disease Resistancein Cereals; Improving Disease Resistancein Legumes; Improving Disease Resistancein Vegetables; Improving Disease Resistance in Cassava and Brassica; Summary and Outlook; References; Chapter 2 Bacterial Blight Resistance in Rice; The Disease and Pathogen; Factors Affecting Pathogenicity of Xoo; Xoo Resistance in Rice
  • Overview of Disease Resistance Mechanism in PlantsQualitative Resistance to Xoo; Quantitative Resistance to Xoo; Control of Bacterial Blight; Conclusion and Future Prospects; References; Chapter 3 The Genetic Basis of Disease Resistance in Maize; Introduction; Understanding the Intruders: Diseases of Maize; Understanding the System: Genetic Architecture of Disease Resistance in Maize and Biological Insights; Translating Knowledge to Action: Breeding for Disease Resistance; Conclusions; References; Chapter 4 Genomics-Assisted Breeding for Fusarium Head Blight Resistance in Wheat; Introduction
  • Genomics-Assisted Breeding for FHB ResistanceMAS for the Major FHB Resistance Gene Fhb1; MAS for QTL Other than Fhb1 and MAS for Multiple QTL; MAS for FHB Resistance QTL Available in European Winter Wheat; MAS for Improving FHB Resistance in Tetraploid Wheat; Conclusions and Summary; References; Chapter 5 Virus Resistance in Barley; Introduction; Important Viral Pathogens of Barley; Barley Yellow Mosaic Virus/ Barley Mild Mosaic Virus; Barley Yellow Dwarf Virus / Cereal Yellow Dwarf Virus; Breeding for Virus Resistance -Some Case History; Sources and Genetics of Resistance
  • Molecular Markers for Virus ResistanceIsolation of Virus Resistance Genesin Barley; Genomics-Based Breeding for Virus Resistance in Barley; Genomic Tools; Use of Genomic Resources in Marker Saturation; Allele Mining and Future Prospects; References; Chapter 6 Molecular Breeding for Striga Resistance in Sorghum; Introduction; Development of Bioassays and Dissecting Striga Resistance Mechanisms; Understanding Host-Parasite Biology: Exploring Pathway Stages as Entry Points for Breeding Resistance to Striga
  • Striga Diversity, Racial Differentiation, and its Implications on Striga Resistance BreedingQTL Analysis and Marker-Assisted Selection for Improving Striga Resistance; Recent Development in Marker-Assisted Backcrossing for Development of Striga Resistance Products; Advances in Genomics and Applications for Striga Resistance Research; Managing Striga in Sorghum: Current Technologies and Strategies; Conclusion; Acknowledgment; References; Chapter 7 Nematode Resistance in Soybean; Introduction; Overview of Nematode Problemsin Soybean Production; Soybean Cyst Nematode; Root-Knot Nematode