Cargando…

MEANING, LOGIC AND LUDICS.

This book presents several recent advances in natural language semantics and explores the boundaries between syntax and semantics over the last two decades. It is based on some of the most recent theories in logic, such as linear logic and ludics, first c.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Lecomte, Alain
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore : World Scientific Publishing Company, 2011.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mu 4500
001 EBOOKCENTRAL_ocn858227911
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|||||||||
008 130914s2011 si o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d OCLCQ  |d DEBSZ  |d OCLCQ  |d ZCU  |d MERUC  |d U3W  |d OCLCO  |d OCLCF  |d OCLCQ  |d OCLCO  |d ICG  |d OCLCQ  |d DKC  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
020 |a 9781848164581 
020 |a 1848164580 
029 1 |a AU@  |b 000055916375 
029 1 |a DEBBG  |b BV044161519 
029 1 |a DEBSZ  |b 393922480 
029 1 |a AU@  |b 000073139072 
035 |a (OCoLC)858227911 
050 4 |a P98 
082 0 4 |a 006.3/5  |a 511.3 
049 |a UAMI 
100 1 |a Lecomte, Alain. 
245 1 0 |a MEANING, LOGIC AND LUDICS. 
260 |a Singapore :  |b World Scientific Publishing Company,  |c 2011. 
300 |a 1 online resource (388 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
505 0 |a Preface; 1. Introduction; 1.1 The Logical Space of Meaning; 1.2 The Aim of This Book; 1.3 Starting from Traditional Formal Semantics; 1.4 Semantics and the History of Logic (1): Intuitionism; 1.4.1 Curry-Howard; 1.4.2 Lambek and the substructural hypothesis; 1.5 Semantics and the History of Logic (2): Classicism; 1.6 Semantics and the History of Logic (3): Linear Logic; 1.7 Presentation of the Book; Part I. Truth-Conditional Meaning; 2. Compositional Approaches and Binding; 2.1 Representing Logical Meaning: The Binding Issue; 2.1.1 The syntactic notion of binding. 
505 8 |a 2.1.2 The semantic notion of binding2.1.3 The model-theoretic notion of binding; 2.2 Syntactic Derivations and Semantic Composition; 2.3 MontagueGrammar Revisited; 2.3.1 Fromrules to sequents; 2.3.2 On relatives and quantification; 2.3.3 Examples; 2.3.4 On binding; 2.4 A Theory of Simple Types; 2.5 Heim and Kratzer's Theory; 2.5.1 Interpreting derivation trees; 2.5.2 Predicate modification; 2.5.3 Variables and binding; 2.5.4 Towards a proof-theoretic account of binding; 3. Derivationalism; 3.1 Introduction; 3.2 Categorial Grammars; 3.3 The (Pure) Lambek Calculus. 
505 8 |a 3.3.1 The mathematics of sentence structure3.3.2 A categorical system; 3.4 Minimalist Grammars; 3.4.1 Minimalist principles; 3.4.2 Features; 3.4.3 Minimalist grammars; 3.4.4 Merge; 3.4.5 Move; 3.4.6 Minimalist grammars and categorial grammars; 3.4.7 Binding as "Cooper storage"; 3.4.8 The interpretation of derivational trees; 3.4.9 The semantic interpretation of Merge; 3.4.10 The semantic interpretation of Move; 3.5 Concluding Remarks; Part II. Logic; 4. Deductive Systems; 4.1 Fitch's Natural Deduction System; 4.1.1 Conjunction; 4.1.2 Implication; 4.1.3 Disjunction; 4.1.4 Negation. 
505 8 |a 4.2 Natural Deduction in Intuitionistic Logic4.2.1 Tree format; 4.2.2 Normalization; 4.2.3 Sequent format; 4.3 Intuitionistic Sequent Calculus; 4.3.1 Structural rule; 4.3.2 Identity rules; 4.3.3 Logical rules; 4.3.4 An example of a proof in intuitionistic logic; 4.3.5 The cut rule; 4.3.6 Lists and sets; 4.3.7 Structural rules; 4.4 Classical Sequent Calculus; 4.4.1 Structural rules; 4.4.2 Identity rules; 4.4.3 Logical rules .; 4.5 Some Properties of the Sequent Calculus; 4.5.1 Subformula property; 4.5.2 Cut-elimination; 4.6 Linear Logic; 4.6.1 Identity rules; 4.6.2 Logical rules. 
505 8 |a 4.6.3 Exponentials4.6.4 Constants; 4.6.5 The one-sided calculus; 4.6.6 Intuitive interpretation; 4.7 Back to the Lambek Calculus; 4.7.1 The Lambek calculus as non-commutative linear logic; 4.8 Linguistic Applications of the Additives; 4.9 ProofNets; 4.9.1 A geometrization of logic; 4.9.2 Cut-elimination in proof nets; 4.10 Proof Nets for the Lambek Calculus; 4.11 Concluding Remarks; 5. Curry-Howard Correspondence; 5.1 Introduction; 5.2 A Correspondence Between Types and Formula; 5.3 An Example of a Combinator; 5.4 Concluding Remarks; Part III. Proof Theory Applied to Linguistics. 
500 |a 6. Using the Lambek Calculus and Its Variants. 
520 |a This book presents several recent advances in natural language semantics and explores the boundaries between syntax and semantics over the last two decades. It is based on some of the most recent theories in logic, such as linear logic and ludics, first c. 
588 0 |a Print version record. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Computational linguistics. 
650 0 |a Logic. 
650 6 |a Linguistique informatique. 
650 7 |a computational linguistics.  |2 aat 
650 7 |a Computational linguistics  |2 fast 
650 7 |a Logic  |2 fast 
776 0 8 |i Print version:  |a Lecomte, Alain.  |t MEANING, LOGIC AND LUDICS.  |d Singapore : World Scientific Publishing Company, ©2011  |z 9781848164567 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=840536  |z Texto completo 
938 |a EBL - Ebook Library  |b EBLB  |n EBL840536 
994 |a 92  |b IZTAP