The axiom of determinacy, forcing axioms, and the nonstationary ideal /
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Berlin ; New York :
W. de Gruyter,
1999.
|
Colección: | De Gruyter series in logic and its applications ;
1. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- 1 Introduction
- 1.1 The Nonstationary Ideal On Ï?1
- 1.2 The Partial Order â??max
- 1.3 â??max Variations
- 1.4 Extensions Of Inner Models Beyond L (â??)
- 1.5 Concluding Remarks
- 2 Preliminaries
- 2.1 Weakly Homogeneous Trees And Scales
- 2.2 Generic Absoluteness
- 2.3 The Stationary Tower
- 2.4 Forcing Axioms
- 2.5 Reflection Principles
- 2.6 Generic Ideals
- 3 The Nonstationary Ideal
- 3.1 The Nonstationary Ideal And Î?Ì°12
- 3.2 The Nonstationary Ideal And Ch
- 4 The â??max-Extension
- 4.1 Iterable Structures
- 4.2 The Partial Order â??max 5 Applications
- 5.1 The Sentence Ï?ac
- 5.2 Martinâ€?S Maximum, Ï?ac And â??Ï?(Ï?2)
- 5.3 The Sentence Ï?ac
- 5.4 The Stationary Tower And â??max
- 5.5 â??*Max
- 5.6 â??0Max
- 5.7 The Axiom (**)
- 5.8 Homogeneity Properties Of P(Ï?1)/Lns
- 6 â??max Variations
- 6.1 2â??max
- 6.2 Variations For Obtaining Ï?1-Dense Ideals
- 6.3 Nonregular Ultrafilters On Ï?1
- 7 Conditional Variations
- 7.1 Suslin Trees
- 7.2 The Borel Conjecture
- 8 â?£ Principles For Ï?1
- 8.1 Condensation Principles
- 8.2 â??â?£Nsmax 8.3 The Principles, â?£+Ns And â?£++Ns
- 9 Extensions Of L(Î?, â??)
- 9.1 Ad+
- 9.2 The â??max-Extension Of L(Î?, â??)
- 9.3 The â?šmax-Extension Of L(Î?, â??)
- 9.4 Chang�S Conjecture
- 9.5 Weak And Strong Reflection Principles
- 9.6 Strong Chang�S Conjecture
- 9.7 Ideals On Ï?2
- 10 Further Results
- 10.1 Forcing Notions And Large Cardinals
- 10.2 Coding Into L(P(Ï?1))
- 10.3 Bounded Forms Of Martin�S Maximum
- 10.4 Ω-Logic
- 10.5 Ω-Logic And The Continuum Hypothesis
- 10.6 The Axiom (*)+
- 10.7 The Effective Singular Cardinals Hypothesis 11 Questions
- Bibliography
- Index