Cargando…

The axiom of determinacy, forcing axioms, and the nonstationary ideal /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Woodin, W. H. (W. Hugh)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin ; New York : W. de Gruyter, 1999.
Colección:De Gruyter series in logic and its applications ; 1.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_ocn857769673
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cnu---unuuu
008 130909s1999 gw ob 001 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d OCLCF  |d YDXCP  |d E7B  |d OCLCQ  |d EBLCP  |d DEBSZ  |d AGLDB  |d OCLCQ  |d DEGRU  |d I9W  |d I8H  |d VNS  |d VTS  |d COCUF  |d STF  |d MERUC  |d ZCU  |d VT2  |d ICG  |d DEBBG  |d LOA  |d OCLCQ  |d DKC  |d OCLCQ  |d M8D  |d K6U  |d AU@  |d ADU  |d OCLCQ  |d AJS  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
066 |c (S 
019 |a 868973740  |a 922947712  |a 1055597268  |a 1055760986  |a 1056578261  |a 1082831235  |a 1113385292 
020 |a 9783110804737  |q (electronic bk.) 
020 |a 3110804735  |q (electronic bk.) 
020 |z 311015708X 
020 |z 9783110157086 
029 1 |a DEBSZ  |b 472798596 
035 |a (OCoLC)857769673  |z (OCoLC)868973740  |z (OCoLC)922947712  |z (OCoLC)1055597268  |z (OCoLC)1055760986  |z (OCoLC)1056578261  |z (OCoLC)1082831235  |z (OCoLC)1113385292 
037 |n Title subscribed to via ProQuest Academic Complete 
050 4 |a QA9.7  |b .W66 1999eb 
072 7 |a QA  |2 lcco 
072 7 |a MAT  |x 000000  |2 bisacsh 
082 0 4 |a 511.3  |2 22 
084 |a 31.10  |2 bcl 
049 |a UAMI 
100 1 |a Woodin, W. H.  |q (W. Hugh)  |1 https://id.oclc.org/worldcat/entity/E39PBJdrHdBXMDfgQmMjd8gHYP 
245 1 4 |a The axiom of determinacy, forcing axioms, and the nonstationary ideal /  |c W. Hugh Woodin. 
264 1 |a Berlin ;  |a New York :  |b W. de Gruyter,  |c 1999. 
300 |a 1 online resource (vi, 934 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file 
490 1 |a De Gruyter series in logic and its applications,  |x 1438-1893 ;  |v 1 
504 |a Includes bibliographical references (pages 927-929) and index. 
588 0 |a Print version record. 
505 0 |6 880-01  |a 1 Introduction -- 1.1 The Nonstationary Ideal On Ï?1 -- 1.2 The Partial Order â??max -- 1.3 â??max Variations -- 1.4 Extensions Of Inner Models Beyond L (â??) -- 1.5 Concluding Remarks -- 2 Preliminaries -- 2.1 Weakly Homogeneous Trees And Scales -- 2.2 Generic Absoluteness -- 2.3 The Stationary Tower -- 2.4 Forcing Axioms -- 2.5 Reflection Principles -- 2.6 Generic Ideals -- 3 The Nonstationary Ideal -- 3.1 The Nonstationary Ideal And Î?Ì°12 -- 3.2 The Nonstationary Ideal And Ch -- 4 The â??max-Extension -- 4.1 Iterable Structures 
505 8 |a 4.2 The Partial Order â??max 5 Applications -- 5.1 The Sentence Ï?ac -- 5.2 Martinâ€?S Maximum, Ï?ac And â??Ï?(Ï?2) -- 5.3 The Sentence Ï?ac -- 5.4 The Stationary Tower And â??max -- 5.5 â??*Max -- 5.6 â??0Max -- 5.7 The Axiom (**) -- 5.8 Homogeneity Properties Of P(Ï?1)/Lns -- 6 â??max Variations -- 6.1 2â??max -- 6.2 Variations For Obtaining Ï?1-Dense Ideals -- 6.3 Nonregular Ultrafilters On Ï?1 -- 7 Conditional Variations -- 7.1 Suslin Trees -- 7.2 The Borel Conjecture -- 8 â?£ Principles For Ï?1 -- 8.1 Condensation Principles 
505 8 |a 8.2 â??â?£Nsmax 8.3 The Principles, â?£+Ns And â?£++Ns -- 9 Extensions Of L(Î?, â??) -- 9.1 Ad+ -- 9.2 The â??max-Extension Of L(Î?, â??) -- 9.3 The â?šmax-Extension Of L(Î?, â??) -- 9.4 Changâ€?S Conjecture -- 9.5 Weak And Strong Reflection Principles -- 9.6 Strong Changâ€?S Conjecture -- 9.7 Ideals On Ï?2 -- 10 Further Results -- 10.1 Forcing Notions And Large Cardinals -- 10.2 Coding Into L(P(Ï?1)) -- 10.3 Bounded Forms Of Martinâ€?S Maximum -- 10.4 Ω-Logic -- 10.5 Ω-Logic And The Continuum Hypothesis -- 10.6 The Axiom (*)+ 
505 8 |a 10.7 The Effective Singular Cardinals Hypothesis 11 Questions -- Bibliography -- Index 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Forcing (Model theory) 
650 6 |a Forcing (Théorie des modèles) 
650 7 |a MATHEMATICS  |x General.  |2 bisacsh 
650 7 |a Forcing (Model theory)  |2 fast 
650 7 |a Lógica matemática.  |2 larpcal 
650 7 |a Teoria dos conjuntos.  |2 larpcal 
776 0 8 |i Print version:  |a Woodin, W.H. (W. Hugh).  |t Axiom of determinacy, forcing axioms, and the nonstationary ideal  |z 311015708X  |w (DLC) 99023307  |w (OCoLC)41142955 
830 0 |a De Gruyter series in logic and its applications ;  |v 1.  |x 1438-1893 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3044462  |z Texto completo 
880 0 0 |6 505-01/(S  |t Frontmatter --  |t 1 Introduction --  |t 2 Preliminaries --  |t 3 The nonstationary ideal --  |t 4 The ℙmax-extension --  |t 5 Applications --  |t 6 ℙmax variations. 6.1 2ℙmax --  |t 6 ℙmax variations. 6.2 Variations for obtaining ω1-dense ideals. 6.2.1 ℚmax --  |t 6 ℙmax variations. 6.2 Variations for obtaining ω1-dense ideals. 6.2.2 ℚ*max --  |t 6 ℙmax variations. 6.2 Variations for obtaining ω1-dense ideals. 6.2.3 2ℚmax --  |t 6 ℙmax variations. 6.2 Variations for obtaining ω1-dense ideals. 6.2.4 Weak Kurepa trees and ℚmax --  |t 6 ℙmax variations. 6.2 Variations for obtaining ω1-dense ideals. 6.2.5 KTℚmax --  |t 6 ℙmax variations. 6.2 Variations for obtaining ω1-dense ideals. 6.2.6 Null sets and the nonstationary ideal --  |t 6 ℙmax variations. 6.3 Nonregular ultrafilters on ω1 --  |t 7 Conditional variations --  |t 8 ♣ principles for ω1. 8.1 Condensation Principles --  |t 8 ♣ principles for ω1. 8.2 ℙ♣NSmax --  |t 8 ♣ principles for ω1. 8.3 The principles, ♣+NS and ♣++NS --  |t 9 Extensions of L(Γ, ℝ). 9.1 AD+ --  |t 9 Extensions of L(Γ, ℝ). 9.2 The ℙmax-extension of L(Γ, ℝ) --  |t 9 Extensions of L(Γ, ℝ). 9.3 The ℚmax-extension of L(Γ, ℝ) --  |t 9 Extensions of L(Γ, ℝ). 9.4 Chang's Conjecture --  |t 9 Extensions of L(Γ, ℝ). 9.5 Weak and Strong Reflection Principles --  |t 9 Extensions of L(Γ, ℝ). 9.6 Strong Chang's Conjecture --  |t 9 Extensions of L(Γ, ℝ). 9.7 Ideals on ω2 --  |t 10 Further results. 10.1 Forcing notions and large cardinals --  |t 10 Further results. 10.2 Coding into L(P(ω1)) --  |t 10 Further results. 10.3 Bounded forms of Martin's Maximum --  |t 10 Further results. 10.4 Ω-logic --  |t 10 Further results. 10.5 Ω-logic and the Continuum Hypothesis --  |t 10 Further results. 10.6 The Axiom (*)+ --  |t 10 Further results. 10.7 The Effective Singular Cardinals Hypothesis --  |t 11 Questions --  |t Bibliography --  |t Index. 
938 |a De Gruyter  |b DEGR  |n 9783110804737 
938 |a EBL - Ebook Library  |b EBLB  |n EBL3044462 
938 |a ebrary  |b EBRY  |n ebr10789491 
938 |a EBSCOhost  |b EBSC  |n 627693 
938 |a YBP Library Services  |b YANK  |n 10819153 
994 |a 92  |b IZTAP