|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
EBOOKCENTRAL_ocn857769673 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
130909s1999 gw ob 001 0 eng d |
040 |
|
|
|a N$T
|b eng
|e rda
|e pn
|c N$T
|d OCLCF
|d YDXCP
|d E7B
|d OCLCQ
|d EBLCP
|d DEBSZ
|d AGLDB
|d OCLCQ
|d DEGRU
|d I9W
|d I8H
|d VNS
|d VTS
|d COCUF
|d STF
|d MERUC
|d ZCU
|d VT2
|d ICG
|d DEBBG
|d LOA
|d OCLCQ
|d DKC
|d OCLCQ
|d M8D
|d K6U
|d AU@
|d ADU
|d OCLCQ
|d AJS
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCL
|
066 |
|
|
|c (S
|
019 |
|
|
|a 868973740
|a 922947712
|a 1055597268
|a 1055760986
|a 1056578261
|a 1082831235
|a 1113385292
|
020 |
|
|
|a 9783110804737
|q (electronic bk.)
|
020 |
|
|
|a 3110804735
|q (electronic bk.)
|
020 |
|
|
|z 311015708X
|
020 |
|
|
|z 9783110157086
|
029 |
1 |
|
|a DEBSZ
|b 472798596
|
035 |
|
|
|a (OCoLC)857769673
|z (OCoLC)868973740
|z (OCoLC)922947712
|z (OCoLC)1055597268
|z (OCoLC)1055760986
|z (OCoLC)1056578261
|z (OCoLC)1082831235
|z (OCoLC)1113385292
|
037 |
|
|
|n Title subscribed to via ProQuest Academic Complete
|
050 |
|
4 |
|a QA9.7
|b .W66 1999eb
|
072 |
|
7 |
|a QA
|2 lcco
|
072 |
|
7 |
|a MAT
|x 000000
|2 bisacsh
|
082 |
0 |
4 |
|a 511.3
|2 22
|
084 |
|
|
|a 31.10
|2 bcl
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Woodin, W. H.
|q (W. Hugh)
|1 https://id.oclc.org/worldcat/entity/E39PBJdrHdBXMDfgQmMjd8gHYP
|
245 |
1 |
4 |
|a The axiom of determinacy, forcing axioms, and the nonstationary ideal /
|c W. Hugh Woodin.
|
264 |
|
1 |
|a Berlin ;
|a New York :
|b W. de Gruyter,
|c 1999.
|
300 |
|
|
|a 1 online resource (vi, 934 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a data file
|
490 |
1 |
|
|a De Gruyter series in logic and its applications,
|x 1438-1893 ;
|v 1
|
504 |
|
|
|a Includes bibliographical references (pages 927-929) and index.
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|6 880-01
|a 1 Introduction -- 1.1 The Nonstationary Ideal On Ï?1 -- 1.2 The Partial Order â??max -- 1.3 â??max Variations -- 1.4 Extensions Of Inner Models Beyond L (â??) -- 1.5 Concluding Remarks -- 2 Preliminaries -- 2.1 Weakly Homogeneous Trees And Scales -- 2.2 Generic Absoluteness -- 2.3 The Stationary Tower -- 2.4 Forcing Axioms -- 2.5 Reflection Principles -- 2.6 Generic Ideals -- 3 The Nonstationary Ideal -- 3.1 The Nonstationary Ideal And Î?Ì°12 -- 3.2 The Nonstationary Ideal And Ch -- 4 The â??max-Extension -- 4.1 Iterable Structures
|
505 |
8 |
|
|a 4.2 The Partial Order â??max 5 Applications -- 5.1 The Sentence Ï?ac -- 5.2 Martinâ€?S Maximum, Ï?ac And â??Ï?(Ï?2) -- 5.3 The Sentence Ï?ac -- 5.4 The Stationary Tower And â??max -- 5.5 â??*Max -- 5.6 â??0Max -- 5.7 The Axiom (**) -- 5.8 Homogeneity Properties Of P(Ï?1)/Lns -- 6 â??max Variations -- 6.1 2â??max -- 6.2 Variations For Obtaining Ï?1-Dense Ideals -- 6.3 Nonregular Ultrafilters On Ï?1 -- 7 Conditional Variations -- 7.1 Suslin Trees -- 7.2 The Borel Conjecture -- 8 â?£ Principles For Ï?1 -- 8.1 Condensation Principles
|
505 |
8 |
|
|a 8.2 â??â?£Nsmax 8.3 The Principles, â?£+Ns And â?£++Ns -- 9 Extensions Of L(Î?, â??) -- 9.1 Ad+ -- 9.2 The â??max-Extension Of L(Î?, â??) -- 9.3 The â?šmax-Extension Of L(Î?, â??) -- 9.4 Changâ€?S Conjecture -- 9.5 Weak And Strong Reflection Principles -- 9.6 Strong Changâ€?S Conjecture -- 9.7 Ideals On Ï?2 -- 10 Further Results -- 10.1 Forcing Notions And Large Cardinals -- 10.2 Coding Into L(P(Ï?1)) -- 10.3 Bounded Forms Of Martinâ€?S Maximum -- 10.4 Ω-Logic -- 10.5 Ω-Logic And The Continuum Hypothesis -- 10.6 The Axiom (*)+
|
505 |
8 |
|
|a 10.7 The Effective Singular Cardinals Hypothesis 11 Questions -- Bibliography -- Index
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Forcing (Model theory)
|
650 |
|
6 |
|a Forcing (Théorie des modèles)
|
650 |
|
7 |
|a MATHEMATICS
|x General.
|2 bisacsh
|
650 |
|
7 |
|a Forcing (Model theory)
|2 fast
|
650 |
|
7 |
|a Lógica matemática.
|2 larpcal
|
650 |
|
7 |
|a Teoria dos conjuntos.
|2 larpcal
|
776 |
0 |
8 |
|i Print version:
|a Woodin, W.H. (W. Hugh).
|t Axiom of determinacy, forcing axioms, and the nonstationary ideal
|z 311015708X
|w (DLC) 99023307
|w (OCoLC)41142955
|
830 |
|
0 |
|a De Gruyter series in logic and its applications ;
|v 1.
|x 1438-1893
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3044462
|z Texto completo
|
880 |
0 |
0 |
|6 505-01/(S
|t Frontmatter --
|t 1 Introduction --
|t 2 Preliminaries --
|t 3 The nonstationary ideal --
|t 4 The ℙmax-extension --
|t 5 Applications --
|t 6 ℙmax variations. 6.1 2ℙmax --
|t 6 ℙmax variations. 6.2 Variations for obtaining ω1-dense ideals. 6.2.1 ℚmax --
|t 6 ℙmax variations. 6.2 Variations for obtaining ω1-dense ideals. 6.2.2 ℚ*max --
|t 6 ℙmax variations. 6.2 Variations for obtaining ω1-dense ideals. 6.2.3 2ℚmax --
|t 6 ℙmax variations. 6.2 Variations for obtaining ω1-dense ideals. 6.2.4 Weak Kurepa trees and ℚmax --
|t 6 ℙmax variations. 6.2 Variations for obtaining ω1-dense ideals. 6.2.5 KTℚmax --
|t 6 ℙmax variations. 6.2 Variations for obtaining ω1-dense ideals. 6.2.6 Null sets and the nonstationary ideal --
|t 6 ℙmax variations. 6.3 Nonregular ultrafilters on ω1 --
|t 7 Conditional variations --
|t 8 ♣ principles for ω1. 8.1 Condensation Principles --
|t 8 ♣ principles for ω1. 8.2 ℙ♣NSmax --
|t 8 ♣ principles for ω1. 8.3 The principles, ♣+NS and ♣++NS --
|t 9 Extensions of L(Γ, ℝ). 9.1 AD+ --
|t 9 Extensions of L(Γ, ℝ). 9.2 The ℙmax-extension of L(Γ, ℝ) --
|t 9 Extensions of L(Γ, ℝ). 9.3 The ℚmax-extension of L(Γ, ℝ) --
|t 9 Extensions of L(Γ, ℝ). 9.4 Chang's Conjecture --
|t 9 Extensions of L(Γ, ℝ). 9.5 Weak and Strong Reflection Principles --
|t 9 Extensions of L(Γ, ℝ). 9.6 Strong Chang's Conjecture --
|t 9 Extensions of L(Γ, ℝ). 9.7 Ideals on ω2 --
|t 10 Further results. 10.1 Forcing notions and large cardinals --
|t 10 Further results. 10.2 Coding into L(P(ω1)) --
|t 10 Further results. 10.3 Bounded forms of Martin's Maximum --
|t 10 Further results. 10.4 Ω-logic --
|t 10 Further results. 10.5 Ω-logic and the Continuum Hypothesis --
|t 10 Further results. 10.6 The Axiom (*)+ --
|t 10 Further results. 10.7 The Effective Singular Cardinals Hypothesis --
|t 11 Questions --
|t Bibliography --
|t Index.
|
938 |
|
|
|a De Gruyter
|b DEGR
|n 9783110804737
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL3044462
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10789491
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 627693
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 10819153
|
994 |
|
|
|a 92
|b IZTAP
|