Cargando…

Plenty of room for biology at the bottom : an introduction to bionanotechnology /

This expanded and updated edition of the 2007 version introduces readers from various backgrounds to the rapidly growing interface between biology and nanotechnology. It intellectually integrates concepts, applications, and outlooks from these major scientific fields and presents them to readers fro...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Gazit, Ehud
Otros Autores: Mitraki, Anna
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Hackensack, NJ : Imperial College Press ; Distributed by World Scientific Publishing Co. Pte. Ltd., [2013]
Edición:Second edition.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Ch. 1. Introduction: nanobiotechnology and bionanotechnology. 1.1. Classical biotechnology: industrial production using biological systems. 1.2. Modern biotechnology: from industrial processes to novel therapeutics. 1.3. Modern biotechnology: immunological, enzymatic, and nucleic acid-based technology. 1.4. The interface between nanotechnology and biotechnology: bionanotechnology. 1.5. Supramolecular (bio)chemistry: the theoretical basis for self-assembly. 1.6. The next steps for self-association at the nano-scale. 1.7. Biology in nanotechnology and nano-sciences in biotechnology. 1.8. The combination of bionanotechnology and nanobiotechnology. 1.9. Nanobionics and bio-inspired nanotechnology
  • ch. 2. A brief introduction to nanotechnology. 2.1. The emergence of nanotechnology: "there's plenty of room at the bottom". 2.2. Coining the term "nanotechnology" and the emergence of the nanotechnology concept. 2.3. Manipulating molecules: the scanning probe microscopes. 2.4. Carbon fullerene: a new form of carbon. 2.5. Carbon nanotubes: key building blocks for future nanotechnological applications. 2.6. A single layer of carbon: graphene. 2.7. Non-carbon nanotubes and fullerene-like material: the inorganic nanomaterials. 2.8. Quantum dots and other nanoparticles. 2.9. Nanowires, nanorods, and other nanomaterials. 2.10. Magnetic nanoparticles
  • ch. 3. Natural biological assembly at the nanometric scale. 3.1. The process of self-assembly and self-organization in biology. 3.2. Organization of bacterial S-layers. 3.3. Self-organization of viruses. 3.4. Self-organization of phospholipid membranes. 3.5. Fibrillar cytoskeleton assemblies. 3.6. Nucleic acids: the genetic information media and a template for nanotechnological applications. 3.7. Oligosaccharides and polysaccharides: another class of biological polymers. 3.8. Amyloid fibrils as self-assembled nano-scale bio-assemblies. 3.9. Silk: natural fibrillar supramolecular protein assembly. 3.10. Ribosome: the protein assembly line instrument. 3.11. Other complex machines in the genetic code expression. 3.12. Protein quality-control machinery: the proteasome. 3.13. Biological nano-motors: kinesin and dynein. 3.14. Other nano-motors: flagella and cilia. 3.15. Ion channels: nano-pores of high specificity
  • ch. 4. Nanometric biological assemblies: molecular and chemical basis for interaction. 4.1. Emergence of biological activity through self-assembly. 4.2. Molecular recognition and chemical affinity. 4.3. Affinity and specificity of biological interactions. 4.4. The relation between thermodynamics and kinetics of dissociation. 4.5. The chemical basis for molecular recognition and specific binding. 4.6. The formation of specific complexes by an increase in entropy.
  • Ch. 5. Molecular recognition and the assembly of biological structures. 5.1. Antibodies as the molecular sensors of recognition. 5.2. Selection of antibodies and equivalent systems in the test tube. 5.3. Recognition between nucleic acids by proteins. 5.4. Interaction between receptors and ligands. 5.5. Molecular recognition between nucleic acids. 5.6. Aptamers
  • ch. 6. Self-assembly of biological and bio-inspired nanomaterials. 6.1. Formation of DNA-based materials. 6.2. Assembly of peptide-based nanomaterials. 6.3. The first peptide nanotubes. 6.4. Amphiphile and surfactant-like peptide building blocks. 6.5. Charge complementary as a driving force for self-assembly. 6.6. Conjugation of peptides for self-assembly. 6.7. Aromatic interactions for the formation of nano-structures. 6.8. The formation of aromatic dipeptide nanotubes (ADNT). 6.9. The formation of spherical nano-structures by short peptides. 6.10. Helical peptide building blocks. 6.11. Peptide nucleic acid (PNA)
  • ch. 7. Application of biological assemblies in nanotechnology. 7.1. The use of S-layers for nanolithography. 7.2. The use of DNA for fabrication of conductive nanowires. 7.3. Amyloid fibrils as templates for nanowire fabrication. 7.4. Metallization of actin filaments by chemical modification. 7.5. The use of aromatic peptide nanotubes. 7.6. Bacteriophages as novel biomaterials. 7.7. The use of peptide templates for biomineralization. 7.8. Production of inorganic composite nanomaterials. 7.9. The utilization of biomineralization in nanotechnology
  • ch. 8. Medical and other applications of bionanotechnology. 8.1. The use of drug nanocrystals for improved application. 8.2. The use of nano-containers for drug delivery. 8.3. The use of inorganic nanowires for biological detection. 8.4. The use of soft lithography for biotechnology. 8.5. Contrast agents by nanomagnetic materials. 8.6. Nanoagriculture. 8.7. Water technology and nanotechnology. 8.8. Nanocosmetics. 8.9. Solar energy applications
  • ch. 9. Future prospects for nanobiotechnology and bionanotechnology. 9.1. The marriage of molecular biology and nanotechnology. 9.2. The engineering of modified biological systems for the assembly of nano-structures. 9.3. Nanotechnology and tissue engineering. 9.4. Engineering of the brain tissue. 9.5. Making artificial biological inorganic composites. 9.6. Nanobio machines and nano-robots
  • ch. 10. Concluding remarks: the prospects and dangers of the nanobiological revolution.