Cargando…

Dynamic models for volatility and heavy tails : with applications to financial and economic time series /

Presents a statistical theory for a class of nonlinear time-series models. The overall approach will be of interest to econometricians and statisticians.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Harvey, A. C. (Andrew C.)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge ; New York : Cambridge University Press, 2013.
Colección:Econometric Society monographs ; no. 52.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Preface; Acronyms and Abbreviations; 1 Introduction; 1.1 Unobserved Components and Filters; 1.2 Independence, White Noise and Martingale Differences; 1.2.1 The Law of Iterated Expectations and Optimal Predictions; 1.2.2 Definitions and Properties; 1.3 Volatility; 1.3.1 Stochastic Volatility; 1.3.2 Generalized Autoregressive Conditional Heteroscedasticity; 1.3.3 Exponential GARCH; 1.3.4 Variance, Scale and Outliers; 1.3.5 Location/Scale Models; 1.4 Dynamic Conditional Score Models; 1.5 Distributions and Quantiles; 1.6 Plan of Book; 2 Statistical Distributions and Asymptotic Theory.
  • 2.1 Distributions2.1.1 Student's t Distribution; 2.1.2 General Error Distribution; 2.1.3 Beta Distribution; 2.1.4 Gamma Distribution; 2.2 Maximum Likelihood; 2.2.1 Student's t Distribution; 2.2.2 General Error Distribution; 2.2.3 Gamma Distribution; 2.2.4 Consistency and Asymptotic Normality*; 2.3 Maximum Likelihood Estimation; 2.3.1 An Information Matrix Lemma; 2.3.2 Information Matrix for the First-Order Model; 2.3.3 Information Matrix with the 0=x""010E Parameterization*; 2.3.4 Asymptotic Distribution; 2.3.5 Consistency and Asymptotic Normality*; 2.3.6 Nonstationarity.
  • 2.3.7 Several Parameters2.4 Higher Order Models; 2.5 Tests; 2.5.1 Serial Correlation; 2.5.2 Goodness of Fit of Distributions; 2.5.3 Residuals; 2.5.4 Model Fit; 2.6 Explanatory Variables; 3 Location; 3.1 Dynamic Student's t Location Model; 3.2 Basic Properties; 3.2.1 Generalization and Reduced Form; 3.2.2 Moments of the Observations; 3.2.3 Autocorrelation Function; 3.3 Maximum Likelihood Estimation; 3.3.1 Asymptotic Distribution of the Maximum Likelihood Estimator; 3.3.2 Monte Carlo Experiments; 3.3.3 Application to U.S. GDP; 3.4 Parameter Restrictions*
  • 3.5 Higher Order Models and the State Space Form*3.5.1 Linear Gaussian Models and the Kalman Filter; 3.5.2 The DCS Model; 3.5.3 QARMA Models; 3.6 Trend and Seasonality; 3.6.1 Local Level Model; 3.6.2 Application to Weekly Hours of Employees in U.S. Manufacturing; 3.6.3 Local Linear Trend; 3.6.4 Stochastic Seasonal; 3.6.5 Application to Rail Travel; 3.6.6 QARIMA and Seasonal QARIMA Models*; 3.7 Smoothing; 3.7.1 Weights; 3.7.2 Smoothing Recursions for Linear State Space Models; 3.7.3 Smoothing Recursions for DCS Models; 3.7.4 Conditional Mode Estimation and the Score; 3.8 Forecasting.
  • 3.8.1 QARMA Models3.8.2 State Space Form*; 3.9 Components and Long Memory; 3.10 General Error Distribution; 3.11 Skew Distributions; 3.11.1 How to Skew a Distribution; 3.11.2 Dynamic Skew-t Location Model; 4 Scale; 4.1 Beta-tttt-EGARCH; 4.2 Properties of Stationary Beta-tttt-EGARCH Models; 4.2.1 Exponential GARCH; 4.2.2 Moments; 4.2.3 Autocorrelation Functions of Squares and Powersof Absolute Values; 4.2.4 Autocorrelations and Kurtosis; 4.3 Leverage Effects; 4.4 Gamma-GED-EGARCH; 4.5 Forecasting; 4.5.1 Beta-t-EGARCH; 4.5.2 Gamma-GED-EGARCH; 4.5.3 Integrated Exponential Models.