Cargando…

Graph theory : a problem oriented approach /

"Graph Theory presents a natural, reader-friendly way to learn some of the essential ideas of graph theory starting from first principles. The format is similar to the companion text, Combinatorics: A Problem Oriented Approach also by Daniel A. Marcus, in that it combines the features of a text...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Marcus, Daniel A., 1945-
Autor Corporativo: Mathematical Association of America
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Washington, D.C. : Mathematical Association of America, ©2008.
Colección:MAA textbooks.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ma 4500
001 EBOOKCENTRAL_ocn857078197
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cn|||||||||
008 080130s2008 dcua o 001 0 eng d
010 |z  2008922013 
040 |a E7B  |b eng  |e pn  |c E7B  |d OCLCO  |d OCLCQ  |d OCLCA  |d OCLCQ  |d OCLCF  |d OCL  |d YDXCP  |d EBLCP  |d DEBSZ  |d OCLCQ  |d AZK  |d COCUF  |d MOR  |d PIFAG  |d ZCU  |d MERUC  |d OCLCQ  |d U3W  |d STF  |d WRM  |d NRAMU  |d ICG  |d VT2  |d AU@  |d OCLCQ  |d WYU  |d DKC  |d OCLCQ  |d UKCRE  |d CUY  |d INARC  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 903208596  |a 961594794  |a 962573651  |a 975777647  |a 1018027264  |a 1041887463  |a 1059011338  |a 1065707686  |a 1081236131  |a 1153451540  |a 1198812324  |a 1228585847  |a 1285564964 
020 |a 9780883859698  |q (e-book) 
020 |a 0883859696  |q (e-book) 
020 |z 0883857537 
020 |z 9780883857533 
020 |z 9780883857755 
020 |a 9781470451851  |q (online) 
020 |a 1470451859 
029 1 |a AU@  |b 000053297543 
029 1 |a AU@  |b 000062382774 
029 1 |a DEBBG  |b BV044103555 
029 1 |a DEBSZ  |b 449725901 
029 1 |a NZ1  |b 15348512 
035 |a (OCoLC)857078197  |z (OCoLC)903208596  |z (OCoLC)961594794  |z (OCoLC)962573651  |z (OCoLC)975777647  |z (OCoLC)1018027264  |z (OCoLC)1041887463  |z (OCoLC)1059011338  |z (OCoLC)1065707686  |z (OCoLC)1081236131  |z (OCoLC)1153451540  |z (OCoLC)1198812324  |z (OCoLC)1228585847  |z (OCoLC)1285564964 
050 4 |a QA166  |b .M37 2008eb 
082 0 4 |a 511.5  |2 22 
049 |a UAMI 
100 1 |a Marcus, Daniel A.,  |d 1945-  |1 https://id.oclc.org/worldcat/entity/E39PCjG8bkdvBdWQfvV6DKRKcX 
245 1 0 |a Graph theory :  |b a problem oriented approach /  |c Daniel A. Marcus. 
260 |a Washington, D.C. :  |b Mathematical Association of America,  |c ©2008. 
300 |a 1 online resource (xvi, 205 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a MAA textbooks 
500 |a Includes index. 
520 |a "Graph Theory presents a natural, reader-friendly way to learn some of the essential ideas of graph theory starting from first principles. The format is similar to the companion text, Combinatorics: A Problem Oriented Approach also by Daniel A. Marcus, in that it combines the features of a textbook with those of a problem workbook. The material is presented through a series of approximately 360 strategically placed problems with connecting text. This is supplemented by 280 additional problems that are intended to be used as homework assignments. Concepts of graph theory are introduced, developed, and reinforced by working through leading questions posed in the problems. This problem-oriented format is intended to promote active involvement by the reader while always providing clear direction. This approach figures prominently on the presentation of proofs, which become more frequent and elaborate as the book progresses. Arguments are arranged in digestible chunks and always appear along with concrete examples to keep the readers firmly grounded in their motivation. Spanning tree algorithms, Euler paths, Hamilton paths and cycles, planar graphs, independence and covering, connections and obstructions, and vertex and edge colorings make up the core of the book. Hall's Theorem, the Konig-Egervary Theorem, Dilworth's Theorem and the Hungarian algorithm to the optional assignment problem, matrices, and Latin squares are also explored."--Back cover. 
505 0 |a Cover ; Title page ; Preface; Contents; Introduction; Path Problems; Coloring Problems; Isomorphic Graphs; Planar Graphs; Disjoint Paths; Shortest Paths; ... and More; A Basic Concepts; Equivalent Graphs; Multigraphs; Directed Graphs and Mixed Graphs; Complete Graphs; Cycle Graphs; Paths in a Graph; Open and Closed Paths; Cycles; Subgraphs; The Complement of a Graph; Degrees of Vertices; The Degree Sequence of a Graph; Regular Graphs; Connected and Disconnected Graphs; Components of a Graph; More Problems; Matrices Associated with a Graph; The Degree Sequence Algorithm; B Isomorphic Graphs. 
505 8 |a More ProblemsC Bipartite Graphs; Complete Bipartite Graphs; Bipartite Graphs and Matrices; Cycles in a Bipartite Graph; Cycle Theorem for Bipartite Graphs; Proof of the Cycle Theorem; More Problems; D Trees and Forests; Pruning a Tree; Directed Trees; Spanning Trees; Counting Spanning Trees; Codewords for Trees: Prufer's Method; More Problems; Three conditions; Cycles and spanning trees; E Spanning Tree Algorithms; Constructing Spanning Trees; Weighted Graphs; Minimal Spanning Trees; Prim's Algorithm; Tables for Prim's Algorithm; The Reduction Algorithm; Spanning Trees and Shortest Paths. 
505 8 |a Minimal Paths in a Weighted GraphMinimal Path Algorithm, first attempt; Minimal Path Algorithm, revised; Tables for Dijkstra's Algorithm; Minimal Paths in a Directed Graph; Negative Weights; More Problems; Justification of the reduction algorithm; Justification of Prim's Algorithm; Justification of Dijkstra's Algorithm; Justification of Ford's Algorithm; F Euler Paths; The Königsberg Bridge Problem; Euler Paths in Directed Graphs and Directed Multigraphs; Application of Euler Paths: State diagrams, DeBruijn sequences, and rotating wheels; More Problems; G Hamilton Paths and Cycles. 
505 8 |a Some Negative TestsNegative test for bipartite graphs; Subgraph Test for Hamilton paths and cycles; Positive Tests for Hamilton Cycles; The Path/Cycle Principle; Some Proofs; Proof of the Path/Cycle Principle; Proof of the Bondy-Chvatal Theorem; Proof of Dirac's Theorem; More Problems; Proof of Posa's Theorem; H Planar Graphs; Regions Formed by a Plane Diagram; Proof that K_5 is Non-Planar, Using Euler's Formula; Non-Planar Graphs and Kuratowski's Theorem; More Problems; I Independence and Covering; The Independence Numbers of a Graph; A Graph Game; Covering Sets and Covering Numbers. 
505 8 |a More ProblemsJ Connections and Obstructions; Internally Disjoint Paths; Edge-Disjoint Paths; Path Connection Numbers; Blocking Sets; k-Connected Graphs; Vertex Cut Sets and Vertex Cut Numbers; The vertex cut number of a graph; More Problems; K Vertex Coloring; The Vertex Coloring Number of a Graph; Vertex Coloring Theorems; Algorithm form of Vertex Coloring Theorem #3:The Upper Bound Algorithm for chi; Why the algorithm works; The Four Color Theorem; Proof of the Six Color Theorem; Proof of the Five Color Theorem; Color switch; Map Coloring; More Problems; Proof of the Four Color Theorem? 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Graph theory. 
650 0 |a Graph theory  |v Problems, exercises, etc. 
650 7 |a Graph theory  |2 fast 
655 7 |a Problems and exercises  |2 fast 
710 2 |a Mathematical Association of America. 
758 |i has work:  |a Graph theory (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGmMYGmVbq76mgqyMVqxpd  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Marcus, Daniel A., 1945-  |t Graph theory.  |d Washington, D.C. : Mathematical Association of America, ©2008  |w (DLC) 2008922013 
830 0 |a MAA textbooks. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3330424  |z Texto completo 
938 |a EBL - Ebook Library  |b EBLB  |n EBL3330424 
938 |a ebrary  |b EBRY  |n ebr10733067 
938 |a YBP Library Services  |b YANK  |n 8784641 
938 |a Internet Archive  |b INAR  |n graphtheoryprobl0000marc 
994 |a 92  |b IZTAP