Cargando…

Principles of artificial neural networks /

Artificial neural networks are most suitable for solving problems that are complex, ill-defined, highly nonlinear, of many and different variables, and/or stochastic. Such problems are abundant in medicine, in finance, in security and beyond. This volume covers the basic theory and architecture of t...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Graupe, Daniel (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: [Hackensack] New Jersey : World Scientific, [2013]
Edición:3rd edition.
Colección:Advanced series on circuits and systems ; v. 7.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_ocn857066058
003 OCoLC
005 20240329122006.0
006 m o d
007 cr mn|||||||||
008 130816t20132013njua ob 001 0 eng d
010 |a  2013372134 
040 |a E7B  |b eng  |e rda  |e pn  |c E7B  |d OCLCO  |d STF  |d YDXCP  |d CUS  |d OSU  |d COO  |d U3G  |d B24X7  |d GGVRL  |d CDX  |d N$T  |d OCLCF  |d EBLCP  |d IDEBK  |d OCLCQ  |d COCUF  |d Z5A  |d ZCU  |d LIV  |d MERUC  |d OCLCQ  |d K6U  |d NJR  |d U3W  |d OCLCQ  |d UUM  |d VTS  |d ICG  |d INT  |d OCLCQ  |d VT2  |d OCLCQ  |d DKC  |d AU@  |d OCLCQ  |d UKAHL  |d OCLCQ  |d AJS  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCL 
019 |a 855505013  |a 864390964  |a 1081287034  |a 1228565593 
020 |a 9789814522748  |q (e-book) 
020 |a 9814522740  |q (e-book) 
020 |z 9789814522731 
020 |z 9814522732 
020 |z 9781299770935 
020 |z 1299770932 
029 1 |a CHNEW  |b 000633568 
029 1 |a DEBBG  |b BV041637285 
029 1 |a DEBBG  |b BV043039288 
029 1 |a DEBBG  |b BV044177183 
029 1 |a DEBSZ  |b 421244437 
029 1 |a GBVCP  |b 813219213 
029 1 |a NZ1  |b 15490110 
029 1 |a NZ1  |b 15550123 
029 1 |a NZ1  |b 15912902 
035 |a (OCoLC)857066058  |z (OCoLC)855505013  |z (OCoLC)864390964  |z (OCoLC)1081287034  |z (OCoLC)1228565593 
037 |a 508344  |b MIL 
050 4 |a QA76.87  |b .G73 2013eb 
072 7 |a COM  |x 000000  |2 bisacsh 
082 0 4 |a 006.32  |2 23 
049 |a UAMI 
100 1 |a Graupe, Daniel,  |e author. 
245 1 0 |a Principles of artificial neural networks /  |c Daniel Graupe. 
250 |a 3rd edition. 
264 1 |a [Hackensack] New Jersey :  |b World Scientific,  |c [2013] 
264 4 |c ©2013 
300 |a 1 online resource (xviii, 363 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Advanced series in circuits and systems ;  |v vol. 7 
520 |a Artificial neural networks are most suitable for solving problems that are complex, ill-defined, highly nonlinear, of many and different variables, and/or stochastic. Such problems are abundant in medicine, in finance, in security and beyond. This volume covers the basic theory and architecture of the major artificial neural networks. Uniquely, it presents 18 complete case studies of applications of neural networks in various fields, ranging from cell-shape classification to micro-trading in finance and to constellation recognition - all with their respective source codes. These case studies demonstrate to the readers in detail how such case studies are designed and executed and how their specific results are obtained. The book is written for a one-semester graduate or senior-level undergraduate course on artificial neural networks. It is also intended to be a self-study and a reference text for scientists, engineers and for researchers in medicine, finance and data mining. 
504 |a Includes bibliographical references (pages 349-356) and indexes. 
505 0 |a Ch. 1. Introduction and role of artificial neural networks -- ch. 2. Fundamentals of biological neural networks -- ch. 3. Basic principles of ANNs and their early structures. 3.1. Basic principles of ANN design. 3.2. Basic network structures. 3.3. The Perceptron's input-output principles. 3.4. The Adaline (ALC) -- ch. 4. The Perceptron. 4.1. The basic structure. 4.2. The single-layer representation problem. 4.3. The limitations of the single-layer Perceptron. 4.4. Many-layer Perceptrons. 4.A. Perceptron case study: identifying autoregressive parameters of a signal (AR time series identification) -- ch. 5. The Madaline. 5.1. Madaline training. 5.A. Madaline case study: character recognition -- ch. 6. Back propagation. 6.1. The back propagation learning procedure. 6.2. Derivation of the BP algorithm. 6.3. Modified BP algorithms. 6.A. Back propagation case study: character recognition. 6.B. Back propagation case study: the exclusive-OR (XOR) problem (2-layer BP). 6.C. Back propagation case study: the XOR problem -- 3 layer BP network. 6.D. Average monthly high and low temperature prediction using backpropagation neural networks -- ch. 7. Hopfield networks. 7.1. Introduction. 7.2. Binary Hopfield networks. 7.3. Setting of weights in Hopfield nets -- bidirectional associative memory (BAM) principle. 7.4. Walsh functions. 7.5. Network stability. 7.6. Summary of the procedure for implementing the Hopfield network. 7.7. Continuous Hopfield models. 7.8. The continuous energy (Lyapunov) function. 7.A. Hopfield network case study: character recognition. 7.B. Hopfield network case study: traveling salesman problem. 7.C. Cell shape detection using neural networks -- ch. 8. Counter propagation. 8.1. Introduction. 8.2. Kohonen self-organizing map (SOM) layer. 8.3. Grossberg layer. 8.4. Training of the Kohonen layer. 8.5. Training of Grossberg layers. 8.6. The combined counter propagation network. 8.A. Counter propagation network case study: character recognition. 
505 8 |a Ch. 9. Large scale memory storage and retrieval (LAMSTAR) network. 9.1. Motivation. 9.2. Basic principles of the LAMSTAR neural network. 9.3. Detailed outline of the LAMSTAR network. 9.4. Forgetting feature. 9.5. Training vs. operational runs. 9.6. Operation in face of missing data. 9.7. Advanced data analysis capabilities. 9.8. Modified version: normalized weights. 9.9. Concluding comments and discussion of applicability. 9.A. LAMSTAR network case study: character recognition. 9.B. Application to medical diagnosis problems. 9.C. Predicting price movement in market microstructure via LAMSTAR. 9.D. Constellation recognition -- ch. 10. Adaptive resonance theory. 10.1. Motivation. 10.2. The ART network structure. 10.3. Setting-up of the ART network. 10.4. Network operation. 10.5. Properties of ART. 10.6. Discussion and general comments on ART-I and ART-II. 10.A. ART-I network case study: character recognition. 10.B. ART-I case study: speech recognition -- ch. 11. The cognitron and the neocognitron. 11.1. Background of the cognitron. 11.2. The basic principles of the cognitron. 11.3. Network operation. 11.4. Cognitron's network training. 11.5. The neocognitron -- ch. 12. Statistical training. 12.1. Fundamental philosophy. 12.2. Annealing methods. 12.3. Simulated annealing by Boltzman training of weights. 12.4. Stochastic determination of magnitude of weight change. 12.5. Temperature-equivalent setting. 12.6. Cauchy training of neural network. 12.A. Statistical training case study: a stochastic Hopfield network for character recognition. 12.B. Statistical training case study: Identifying AR signal parameters with a stochastic Perceptron model -- ch. 13. Recurrent (time cycling) back propagation networks. 13.1. Recurrent/discrete time networks. 13.2. Fully recurrent networks. 13.3. Continuously recurrent back propagation networks. 13.A. Recurrent back propagation case study: character recognition. 
588 0 |a Print version record. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Neural networks (Computer science) 
650 6 |a Réseaux neuronaux (Informatique) 
650 7 |a COMPUTERS  |x General.  |2 bisacsh 
650 7 |a Neural networks (Computer science)  |2 fast 
758 |i has work:  |a Principles of artificial neural networks (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGdjTJQMDpTFY94WcpYYxC  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Graupe, Daniel.  |t Principles of artificial neural networks.  |b 3rd edition.  |d Singapore ; Hackensack, N.J. : World Scientific, [2013]  |z 9789814522731  |w (OCoLC)859187757 
830 0 |a Advanced series on circuits and systems ;  |v v. 7. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1336559  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH25565518 
938 |a Books 24x7  |b B247  |n bke00063242 
938 |a Coutts Information Services  |b COUT  |n 26005465 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL1336559 
938 |a ebrary  |b EBRY  |n ebr10742789 
938 |a EBSCOhost  |b EBSC  |n 622050 
938 |a Cengage Learning  |b GVRL  |n GVRL8RHI 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis26005465 
938 |a YBP Library Services  |b YANK  |n 10925658 
994 |a 92  |b IZTAP