Cargando…

The maximal subgroups of the low-dimensional finite classical groups /

Classifies the maximal subgroups of the finite groups of Lie type up to dimension 12, using theoretical and computational methods.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Bray, John N.
Otros Autores: Holt, Derek F., Roney-Dougal, Colva M.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge : Cambridge University Press, 2013.
Colección:London Mathematical Society lecture note series ; 407.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Cover; Contents; Foreword by Martin Liebeck; Preface; 1 Introduction; 1.1 Background; 1.2 Notation; 1.3 Some basic group theory; 1.4 Finite fields and perfect fields; 1.5 Classical forms; 1.6 The classical groups and their orders; 1.7 Outer automorphisms of classical groups; 1.8 Representation theory; 1.9 Tensor products; 1.10 Small dimensions and exceptional isomorphisms; 1.11 Representations of simple groups; 1.12 The natural representations of the classical groups; 1.13 Some results from number theory; 2 The main theorem and the types of geometric subgroups; 2.1 The main theorem.
  • 5.11 Summary of the S2*-maximals6 Containments involving S-subgroups; 6.1 Introduction; 6.2 Containments between S1- and S2*-maximal subgroups; 6.3 Containments between geometric and S*-maximal subgroups; 7 Maximal subgroups of exceptional groups; 7.1 Introduction; 7.2 The maximal subgroups of Sp4(2e) and extensions; 7.3 The maximal subgroups of Sz(q) and extensions; 7.4 The maximal subgroups of G2(2e) and extensions; 8 Tables; 8.1 Description of the tables; 8.2 The tables; References; Index of Definitions.