The maximal subgroups of the low-dimensional finite classical groups /
Classifies the maximal subgroups of the finite groups of Lie type up to dimension 12, using theoretical and computational methods.
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Cambridge :
Cambridge University Press,
2013.
|
Colección: | London Mathematical Society lecture note series ;
407. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover; Contents; Foreword by Martin Liebeck; Preface; 1 Introduction; 1.1 Background; 1.2 Notation; 1.3 Some basic group theory; 1.4 Finite fields and perfect fields; 1.5 Classical forms; 1.6 The classical groups and their orders; 1.7 Outer automorphisms of classical groups; 1.8 Representation theory; 1.9 Tensor products; 1.10 Small dimensions and exceptional isomorphisms; 1.11 Representations of simple groups; 1.12 The natural representations of the classical groups; 1.13 Some results from number theory; 2 The main theorem and the types of geometric subgroups; 2.1 The main theorem.
- 5.11 Summary of the S2*-maximals6 Containments involving S-subgroups; 6.1 Introduction; 6.2 Containments between S1- and S2*-maximal subgroups; 6.3 Containments between geometric and S*-maximal subgroups; 7 Maximal subgroups of exceptional groups; 7.1 Introduction; 7.2 The maximal subgroups of Sp4(2e) and extensions; 7.3 The maximal subgroups of Sz(q) and extensions; 7.4 The maximal subgroups of G2(2e) and extensions; 8 Tables; 8.1 Description of the tables; 8.2 The tables; References; Index of Definitions.