Interdisciplinary Mechatronics : Engineering Science and Research Development.
Mechatronics represents a unifying interdisciplinary and intelligent engineering science paradigm that features an interdisciplinary knowledge area and interactions in terms of the ways of work and thinking, practical experiences, and theoretical knowledge. Mechatronics successfully fuses (but is no...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Hoboken :
Wiley,
2013.
|
Colección: | ISTE.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Preface; Chapter 1. Interdisciplinary Mechatronics Engineering Science andthe Evolution of Human Friendly and Adaptive Mechatronics; 1.1. Introduction; 1.2. Synergetic thinking, learning and innovation inmechatronics design; 1.3. Human adaptive and friendly mechatronics; 1.4. Conclusions; 1.5. Bibliography; Chapter 2. Micro-Nanomechatronics for Biological Cell Analysisand Assembly; 2.1. Introduction of micro-nanomechatronics onbiomedical fields; 2.2. Configuration of micro-nanomechatronics; 2.3. Micro-nanomechatronics for single cell analysis.
- 2.4. Semi-closed microchip for single cell analysis2.5. Biological cell assembly using photo-linkable resin basedon the single cell analysis techniques; 2.6. Conclusion; 2.7 Acknowledgments; 2.8 Bibliography; Chapter 3. Biologically Inspired CPG-Based LocomotionControl System of a Biped Robot Using Nonlinear Oscillatorswith Phase Resetting; 3.1 Introduction; 3.2 Locomotion control system using nonlinear oscillators; 3.3 Stability analysis using a simple biped robot model; 3.4 Experiment using biped robots; 3.5 Conclusion; 3.6 Acknowledgments; 3.7 Bibliography.
- Chapter 4. Modeling a Human's Learning Processes towardContinuous Learning Support System4.1. Introduction; 4.2. Designing the continuous learning by a maze model; 4.3. The layout design of mazes for the continuous learning task; 4.4. Experiment; 4.5. Discussions; 4.6. Conclusions; 4.7. Acknowledgments; 4.8. Bibliography; Chapter 5. PWM Waveform Generation Using Pulse-TypeHardware Neural Networks; 5.1. Introduction; 5.2. PWM servo motor; 5.3. Pulse-type hardware neuron model; 5.4. Pulse-type hardware neural networks; 5.5. Measurements of constructed discrete circuit; 5.6. Conclusion.
- 5.7. Acknowledgments5.8. Bibliography; Chapter 6. Parallel Wrists: Limb Types, Singularities andNew Perspectives; 6.1. Limb architectures and mobility analysis; 6.2. Singularities and performance indices; 6.3. New perspectives; 6.4. Bibliography; Chapter 7. A Robot-Assisted Rehabilitation System
- RehabRoby; 7.1. Introduction; 7.2. Background; 7.3. Control architecture; 7.4. RehabRoby; 7.5. Controllers of RehabRoby; 7.6. Concluding remarks; 7.7. Acknowledgments; 7.8. Bibliography; Chapter 8. MIMO Actuator Force Control of a ParallelRobot for Ankle Rehabilitation; 8.1. Introduction.
- 8.2. Ankle rehabilitation robot8.3. Actuator force control; 8.4. Experimental results; 8.5. Concluding remarks; 8.6. Bibliography; Chapter 9. Performance Evaluation of a Probe Climber forMaintaining Wire Rope; 9.1. Introduction; 9.2. Optimize friction drive conditions using a prototypeprobe climber; 9.3. Impact of different surface friction materials for frictionpulley made on elevation performance; 9.4. Damage detection test of elevator wire rope; 9.5. Damage detection through signal processing; 9.6. Integrity evaluation of wire rope through MFL strength.