Cargando…

Network Anomaly Detection : a Machine Learning Perspective.

With the rapid rise in the ubiquity and sophistication of Internet technology and the accompanying growth in the number of network attacks, network intrusion detection has become increasingly important. Anomaly-based network intrusion detection refers to finding exceptional or nonconforming patterns...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Bhattacharyya, Dhruba Kumar
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hoboken : CRC Press, 2013.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBOOKCENTRAL_ocn854975437
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|||||||||
008 130803s2013 xx o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d OCLCQ  |d DEBSZ  |d OCLCQ  |d MERUC  |d UUM  |d OCLCO  |d OCLCF  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
020 |a 9781466582095 
020 |a 146658209X 
029 1 |a AU@  |b 000055909193 
029 1 |a DEBSZ  |b 405621957 
029 1 |a DEBSZ  |b 431458545 
029 1 |a DEBSZ  |b 449372006 
035 |a (OCoLC)854975437 
050 4 |a TK5105.59 .B474 2013 
082 0 4 |a 005.8 
049 |a UAMI 
100 1 |a Bhattacharyya, Dhruba Kumar. 
245 1 0 |a Network Anomaly Detection :  |b a Machine Learning Perspective. 
260 |a Hoboken :  |b CRC Press,  |c 2013. 
300 |a 1 online resource (364 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
505 0 |a Front Cover; Dedication; Contents; List of Figures; List of Tables; Preface; Acknowledgments; Abstract; Authors; 1. Introduction; 2. Networks and Anomalies; 3. An Overview of Machine Learning Methods; 4. Detecting Anomalies in Network Data; 5. Feature Selection; 6. Approaches to Network Anomaly Detection; 7. Evaluation Methods; 8. Tools and Systems; 9. Open Issues, Challenges and Concluding Remarks; References. 
520 |a With the rapid rise in the ubiquity and sophistication of Internet technology and the accompanying growth in the number of network attacks, network intrusion detection has become increasingly important. Anomaly-based network intrusion detection refers to finding exceptional or nonconforming patterns in network traffic data compared to normal behavior. Finding these anomalies has extensive applications in areas such as cyber security, credit card and insurance fraud detection, and military surveillance for enemy activities. Network Anomaly Detection: A Machine Learning Perspective presents mach. 
588 0 |a Print version record. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Computer networks  |x Security measures. 
650 0 |a Intrusion detection systems (Computer security) 
650 0 |a Machine learning. 
650 6 |a Réseaux d'ordinateurs  |x Sécurité  |x Mesures. 
650 6 |a Systèmes de détection d'intrusion (Sécurité informatique) 
650 6 |a Apprentissage automatique. 
650 7 |a Computer networks  |x Security measures  |2 fast 
650 7 |a Intrusion detection systems (Computer security)  |2 fast 
650 7 |a Machine learning  |2 fast 
758 |i has work:  |a Network anomaly detection (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGFkc9QQpt39f9pGM7f7RC  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Bhattacharyya, Dhruba Kumar.  |t Network Anomaly Detection : A Machine Learning Perspective.  |d Hoboken : CRC Press, ©2013  |z 9781466582088 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1316406  |z Texto completo 
938 |a EBL - Ebook Library  |b EBLB  |n EBL1316406 
994 |a 92  |b IZTAP