|
|
|
|
LEADER |
00000cam a2200000Mi 4500 |
001 |
EBOOKCENTRAL_ocn854975437 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr |n||||||||| |
008 |
130803s2013 xx o 000 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|e pn
|c EBLCP
|d OCLCQ
|d DEBSZ
|d OCLCQ
|d MERUC
|d UUM
|d OCLCO
|d OCLCF
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCL
|
020 |
|
|
|a 9781466582095
|
020 |
|
|
|a 146658209X
|
029 |
1 |
|
|a AU@
|b 000055909193
|
029 |
1 |
|
|a DEBSZ
|b 405621957
|
029 |
1 |
|
|a DEBSZ
|b 431458545
|
029 |
1 |
|
|a DEBSZ
|b 449372006
|
035 |
|
|
|a (OCoLC)854975437
|
050 |
|
4 |
|a TK5105.59 .B474 2013
|
082 |
0 |
4 |
|a 005.8
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Bhattacharyya, Dhruba Kumar.
|
245 |
1 |
0 |
|a Network Anomaly Detection :
|b a Machine Learning Perspective.
|
260 |
|
|
|a Hoboken :
|b CRC Press,
|c 2013.
|
300 |
|
|
|a 1 online resource (364 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
505 |
0 |
|
|a Front Cover; Dedication; Contents; List of Figures; List of Tables; Preface; Acknowledgments; Abstract; Authors; 1. Introduction; 2. Networks and Anomalies; 3. An Overview of Machine Learning Methods; 4. Detecting Anomalies in Network Data; 5. Feature Selection; 6. Approaches to Network Anomaly Detection; 7. Evaluation Methods; 8. Tools and Systems; 9. Open Issues, Challenges and Concluding Remarks; References.
|
520 |
|
|
|a With the rapid rise in the ubiquity and sophistication of Internet technology and the accompanying growth in the number of network attacks, network intrusion detection has become increasingly important. Anomaly-based network intrusion detection refers to finding exceptional or nonconforming patterns in network traffic data compared to normal behavior. Finding these anomalies has extensive applications in areas such as cyber security, credit card and insurance fraud detection, and military surveillance for enemy activities. Network Anomaly Detection: A Machine Learning Perspective presents mach.
|
588 |
0 |
|
|a Print version record.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Computer networks
|x Security measures.
|
650 |
|
0 |
|a Intrusion detection systems (Computer security)
|
650 |
|
0 |
|a Machine learning.
|
650 |
|
6 |
|a Réseaux d'ordinateurs
|x Sécurité
|x Mesures.
|
650 |
|
6 |
|a Systèmes de détection d'intrusion (Sécurité informatique)
|
650 |
|
6 |
|a Apprentissage automatique.
|
650 |
|
7 |
|a Computer networks
|x Security measures
|2 fast
|
650 |
|
7 |
|a Intrusion detection systems (Computer security)
|2 fast
|
650 |
|
7 |
|a Machine learning
|2 fast
|
758 |
|
|
|i has work:
|a Network anomaly detection (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCGFkc9QQpt39f9pGM7f7RC
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Bhattacharyya, Dhruba Kumar.
|t Network Anomaly Detection : A Machine Learning Perspective.
|d Hoboken : CRC Press, ©2013
|z 9781466582088
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1316406
|z Texto completo
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL1316406
|
994 |
|
|
|a 92
|b IZTAP
|