Cargando…

Lambda Calculus with Types /

This handbook with exercises reveals the mathematical beauty of formalisms hitherto mostly used for software and hardware design and verification.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Barendregt, Henk
Otros Autores: Dekkers, Wil, Statman, Richard
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge : Cambridge University Press, 2013.
Colección:Perspectives in logic.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Lambda Calculus with Types; Contents; Preface; Contributors; Our Founders; Introduction; Part I: Simple Types lambda rightarrow mathbb A; 1 The Simply Typed Lambda Calculus; 1.1 The systems lambda rightarrow mathbb A; 1.2 First properties and comparisons; 1.3 Normal inhabitants; 1.4 Representing data types; 1.5 Exercises; 2 Properties; 2.1 Normalization; 2.2 Proofs of strong normalization; 2.3 Checking and finding types; 2.4 Checking inhabitation; 2.5 Exercises; 3 Tools; 3.1 Semantics of lambda rightarrow; 3.2 Lambda theories and term models; 3.3 Syntactic and semantic logical relations.
  • 3.4 Type reducibility3.5 The five canonical term-models; 3.6 Exercises; 4 Definability, unification and matching; 4.1 Undecidability of lambda-definability; 4.2 Undecidability of unification; 4.3 Decidability of matching of rank 3; 4.4 Decidability of the maximal theory; 4.5 Exercises; 5 Extensions; 5.1 Lambda delta; 5.2 Surjective pairing; 5.3 Gödel's system mathcal T: higher-order primitive recursion; 5.4 Spector's system mathcal B: bar recursion; 5.5 Platek's system mathcal Y: fixed point recursion; 5.6 Exercises; 6 Applications; 6.1 Functional programming; 6.2 Logic and proof-checking.
  • 6.3 Proof theory6.4 Grammars, terms and types; Part II: Recursive Types lambda = mathcal A; 7 The Systems lambda = mathcal A; 7.1 Type algebras and type assignment; 7.2 More on type algebras; 7.3 Recursive types via simultaneous recursion; 7.4 Recursive types via mu-abstraction; 7.5 Recursive types as trees; 7.6 Special views on trees; 7.7 Exercises; 8 Properties of Recursive Types; 8.1 Simultaneous recursions vs mu-types; 8.2 Properties of mu-types; 8.3 Properties of types defined by a simultaneous recursion; 8.4 Exercises; 9 Properties of Terms with Types.
  • 9.1 First properties of lambda = mathcal A9.2 Finding and inhabiting types; 9.3 Strong normalization; 9.4 Exercises; 10 Models; 10.1 Interpretations of type assignments in lambda = mathcal A; 10.2 Interpreting Pi mu and Pi mu *; 10.3 Type interpretations in systems with explicit typing; 10.4 Exercises; 11 Applications; 11.1 Subtyping; 11.2 The principal type structures; 11.3 Recursive types in programming languages; 11.4 Further reading; 11.5 Exercises; Part III: Intersection Types lambda cap mathcal S; 12 An Example System; 12.1 The type assignment system lambda cap BCD.
  • 12.2 The filter model mathcal F BCD12.3 Completeness of type assignment; 13 Type Assignment Systems; 13.1 Type theories; 13.2 Type assignment; 13.3 Type structures; 13.4 Filters; 13.5 Exercises; 14 Basic Properties of Intersection Type Assignment; 14.1 Inversion lemmas; 14.2 Subject reduction and expansion; 14.3 Exercises; 15 Type and Lambda Structures; 15.1 Meet semi-lattices and algebraic lattices; 15.2 Natural type structures and lambda structures; 15.3 Type and zip structures; 15.4 Zip and lambda structures; 15.5 Exercises; 16 Filter Models; 16.1 Lambda models; 16.2 Filter models.