Cargando…

Lambda Calculus with Types /

This handbook with exercises reveals the mathematical beauty of formalisms hitherto mostly used for software and hardware design and verification.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Barendregt, Henk
Otros Autores: Dekkers, Wil, Statman, Richard
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge : Cambridge University Press, 2013.
Colección:Perspectives in logic.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBOOKCENTRAL_ocn854975198
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cnu---unuuu
008 130803s2013 enk ob 001 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d OCLCO  |d YDXCP  |d N$T  |d DEBSZ  |d OCLCQ  |d COO  |d OCLCF  |d OCLCQ  |d AU@  |d OCLCQ  |d K6U  |d LUN  |d OCLCQ  |d OCLCO  |d AUW  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCL 
019 |a 1167329144 
020 |a 9781461936565  |q (electronic bk.) 
020 |a 146193656X  |q (electronic bk.) 
020 |a 9781107272248 
020 |a 1107272246 
020 |a 9781139032636  |q (ebook) 
020 |a 1139032631 
020 |a 9780521766142  |q (hardback) 
020 |a 0521766141 
020 |a 9781107471313  |q (paperback) 
020 |a 1107471311 
020 |z 9781107275041 
020 |z 1107275040 
029 1 |a DEBSZ  |b 392053748 
029 1 |a NZ1  |b 15180564 
035 |a (OCoLC)854975198  |z (OCoLC)1167329144 
050 4 |a QA9.5 
072 7 |a COM  |x 037000  |2 bisacsh 
072 7 |a MAT  |x 016000  |2 bisacsh 
072 7 |a MAT  |x 018000  |2 bisacsh 
082 0 4 |a 511.3  |a 511.35  |2 22 
049 |a UAMI 
100 1 |a Barendregt, Henk. 
245 1 0 |a Lambda Calculus with Types /  |c Henk Barendregt, Wil Dekkers, Richard Statman ; with contributions fron Fabio Alessi [and others]. 
260 |a Cambridge :  |b Cambridge University Press,  |c 2013. 
300 |a 1 online resource (857 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Perspectives in Logic 
588 0 |a Print version record. 
505 0 |a Lambda Calculus with Types; Contents; Preface; Contributors; Our Founders; Introduction; Part I: Simple Types lambda rightarrow mathbb A; 1 The Simply Typed Lambda Calculus; 1.1 The systems lambda rightarrow mathbb A; 1.2 First properties and comparisons; 1.3 Normal inhabitants; 1.4 Representing data types; 1.5 Exercises; 2 Properties; 2.1 Normalization; 2.2 Proofs of strong normalization; 2.3 Checking and finding types; 2.4 Checking inhabitation; 2.5 Exercises; 3 Tools; 3.1 Semantics of lambda rightarrow; 3.2 Lambda theories and term models; 3.3 Syntactic and semantic logical relations. 
505 8 |a 3.4 Type reducibility3.5 The five canonical term-models; 3.6 Exercises; 4 Definability, unification and matching; 4.1 Undecidability of lambda-definability; 4.2 Undecidability of unification; 4.3 Decidability of matching of rank 3; 4.4 Decidability of the maximal theory; 4.5 Exercises; 5 Extensions; 5.1 Lambda delta; 5.2 Surjective pairing; 5.3 Gödel's system mathcal T: higher-order primitive recursion; 5.4 Spector's system mathcal B: bar recursion; 5.5 Platek's system mathcal Y: fixed point recursion; 5.6 Exercises; 6 Applications; 6.1 Functional programming; 6.2 Logic and proof-checking. 
505 8 |a 6.3 Proof theory6.4 Grammars, terms and types; Part II: Recursive Types lambda = mathcal A; 7 The Systems lambda = mathcal A; 7.1 Type algebras and type assignment; 7.2 More on type algebras; 7.3 Recursive types via simultaneous recursion; 7.4 Recursive types via mu-abstraction; 7.5 Recursive types as trees; 7.6 Special views on trees; 7.7 Exercises; 8 Properties of Recursive Types; 8.1 Simultaneous recursions vs mu-types; 8.2 Properties of mu-types; 8.3 Properties of types defined by a simultaneous recursion; 8.4 Exercises; 9 Properties of Terms with Types. 
505 8 |a 9.1 First properties of lambda = mathcal A9.2 Finding and inhabiting types; 9.3 Strong normalization; 9.4 Exercises; 10 Models; 10.1 Interpretations of type assignments in lambda = mathcal A; 10.2 Interpreting Pi mu and Pi mu *; 10.3 Type interpretations in systems with explicit typing; 10.4 Exercises; 11 Applications; 11.1 Subtyping; 11.2 The principal type structures; 11.3 Recursive types in programming languages; 11.4 Further reading; 11.5 Exercises; Part III: Intersection Types lambda cap mathcal S; 12 An Example System; 12.1 The type assignment system lambda cap BCD. 
505 8 |a 12.2 The filter model mathcal F BCD12.3 Completeness of type assignment; 13 Type Assignment Systems; 13.1 Type theories; 13.2 Type assignment; 13.3 Type structures; 13.4 Filters; 13.5 Exercises; 14 Basic Properties of Intersection Type Assignment; 14.1 Inversion lemmas; 14.2 Subject reduction and expansion; 14.3 Exercises; 15 Type and Lambda Structures; 15.1 Meet semi-lattices and algebraic lattices; 15.2 Natural type structures and lambda structures; 15.3 Type and zip structures; 15.4 Zip and lambda structures; 15.5 Exercises; 16 Filter Models; 16.1 Lambda models; 16.2 Filter models. 
500 |a 16.3 mathcal D infty models as filter models. 
520 |a This handbook with exercises reveals the mathematical beauty of formalisms hitherto mostly used for software and hardware design and verification. 
504 |a Includes bibliographical references and index. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Lambda calculus. 
650 6 |a Lambda-calcul. 
650 7 |a COMPUTERS  |x Machine Theory.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Infinity.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Logic.  |2 bisacsh 
650 7 |a Lambda calculus  |2 fast 
700 1 |a Dekkers, Wil. 
700 1 |a Statman, Richard. 
758 |i has work:  |a Lambda calculus with types (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGmJqfFqYQCYv4Fc77w7Xm  |4 https://id.oclc.org/worldcat/ontology/hasWork 
830 0 |a Perspectives in logic. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1303578  |z Texto completo 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL1303578 
938 |a EBSCOhost  |b EBSC  |n 592746 
938 |a YBP Library Services  |b YANK  |n 10907296 
994 |a 92  |b IZTAP