|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
EBOOKCENTRAL_ocn854974135 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr mn||||||||| |
008 |
130803t20132013nju ob 001 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|e rda
|e pn
|c EBLCP
|d OCLCO
|d OCLCQ
|d OCLCA
|d DEBSZ
|d E7B
|d OSU
|d OCLCA
|d OCLCQ
|d GGVRL
|d OCLCF
|d OCLCQ
|d LOA
|d OCLCQ
|d COCUF
|d MOR
|d CCO
|d PIFAG
|d ZCU
|d MERUC
|d OCLCQ
|d U3W
|d STF
|d WRM
|d NRAMU
|d ICG
|d INT
|d OCLCQ
|d LEAUB
|d DKC
|d OCLCQ
|d UKCRE
|d SDF
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCL
|
019 |
|
|
|a 960205877
|a 988442168
|a 992117154
|a 1037760152
|a 1038699907
|a 1045510841
|a 1153539834
|
020 |
|
|
|a 9789814434836
|q (electronic bk.)
|
020 |
|
|
|a 9814434833
|q (electronic bk.)
|
020 |
|
|
|z 9789814434829
|
020 |
|
|
|z 9814434825
|
029 |
1 |
|
|a AU@
|b 000054754752
|
029 |
1 |
|
|a DEBBG
|b BV044176503
|
029 |
1 |
|
|a DEBSZ
|b 391775995
|
029 |
1 |
|
|a DEBSZ
|b 454998864
|
029 |
1 |
|
|a AU@
|b 000073139320
|
035 |
|
|
|a (OCoLC)854974135
|z (OCoLC)960205877
|z (OCoLC)988442168
|z (OCoLC)992117154
|z (OCoLC)1037760152
|z (OCoLC)1038699907
|z (OCoLC)1045510841
|z (OCoLC)1153539834
|
050 |
|
4 |
|a QA377.3
|b .S266 2013eb
|
082 |
0 |
4 |
|a 515.732
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Samoĭlenko, A. M.
|q (Anatoliĭ Mikhaĭlovich),
|e author.
|
245 |
1 |
0 |
|a Elements of mathematical theory of evolutionary equations in Banach spaces /
|c Anatoly M. Samoilenko, National Academy of Sciences, Ukraine ; Yuriy V. Teplinsky, Kamyanets-Podislsky National University, Ukraine.
|
264 |
|
1 |
|a [Hackensack] New Jersey :
|b World Scientific,
|c [2013]
|
264 |
|
4 |
|c ©2013
|
300 |
|
|
|a 1 online resource (x, 397 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a World Scientific series on nonlinear science, Series A,
|x 1793-1010 ;
|v vol. 86
|
520 |
3 |
|
|a Evolutionary equations are studied in abstract Banach spaces and in spaces of bounded number sequences. For linear and nonlinear difference equations, which are defined on finite-dimensional and infinite-dimensional tori, the problem of reducibility is solved, in particular, in neighborhoods of their invariant sets, and the basics for a theory of invariant manifolds are established. Also considered are the questions on existence and approximate construction of periodic solutions for difference equations in infinite-dimensional spaces and the problem of extendibility of the solutions in degenerate cases. For nonlinear differential equations in spaces of bounded number sequences, new results are obtained in the theory of countable-point boundary-value problems. The book contains new mathematical results that will be useful towards advances in nonlinear mechanics and theoretical physics--Page 4 of cover.
|
504 |
|
|
|a Includes bibliographical references (pages 385-395) and index.
|
505 |
0 |
|
|a Reducibility problems for difference equations -- Invariant tori of difference equations in the space M -- Periodic solutions of difference equations. Extension of solutions -- Countable-point boundary-value problems for nonlinear differential equations.
|
588 |
0 |
|
|a Print version record.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Evolution equations.
|
650 |
|
0 |
|a Differential equations, Nonlinear.
|
650 |
|
0 |
|a Banach spaces.
|
650 |
|
6 |
|a Équations d'évolution.
|
650 |
|
6 |
|a Équations différentielles non linéaires.
|
650 |
|
6 |
|a Espaces de Banach.
|
650 |
|
7 |
|a Banach spaces
|2 fast
|
650 |
|
7 |
|a Differential equations, Nonlinear
|2 fast
|
650 |
|
7 |
|a Evolution equations
|2 fast
|
700 |
1 |
|
|a Teplinskii, Yu. V.,
|e author.
|
758 |
|
|
|i has work:
|a Elements of mathematical theory of evolutionary equations in Banach spaces (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCGtkx6cgkhgfRPg4wqC683
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Samoĭlenko, A.M. (Anatoliĭ Mikhaĭlovich).
|t Elements of mathematical theory of evolutionary equations in Banach spaces.
|d New Jersey ; London : World Scientific, [2013]
|z 9814434825
|w (OCoLC)811411002
|
830 |
|
0 |
|a World Scientific series on nonlinear science.
|n Series A,
|p Monographs and treatises ;
|v v. 86.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1223611
|z Texto completo
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL1223611
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10719489
|
938 |
|
|
|a Cengage Learning
|b GVRL
|n GVRL8RBV
|
994 |
|
|
|a 92
|b IZTAP
|