Cargando…

Quantum Probability Communications.

Lecture notes from a Summer School on Quantum Probability held at the University of Grenoble are collected in these two volumes of the QP-PQ series. The articles have been refereed and extensively revised for publication. It is hoped that both current and future students of quantum probability will...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Attal, S.
Otros Autores: Lindsay, J. M.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore : World Scientific Publishing Company, 2003.
Colección:Qp-Pq: Quantum Probability & White Noise Analysis S.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mu 4500
001 EBOOKCENTRAL_ocn854974045
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|||||||||
008 130803s2003 si o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d OCLCQ  |d DEBSZ  |d OCLCQ  |d ZCU  |d MERUC  |d U3W  |d OCLCO  |d OCLCF  |d ICG  |d INT  |d OCLCQ  |d DKC  |d AU@  |d OCLCQ  |d HS0  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
020 |a 9789812775429 
020 |a 9812775420 
029 1 |a DEBBG  |b BV044176494 
029 1 |a DEBSZ  |b 391775774 
029 1 |a DEBSZ  |b 44557559X 
035 |a (OCoLC)854974045 
050 4 |a QC174.4  |b .Q83 2003 
082 0 4 |a 530.12 
049 |a UAMI 
100 1 |a Attal, S. 
245 1 0 |a Quantum Probability Communications. 
260 |a Singapore :  |b World Scientific Publishing Company,  |c 2003. 
300 |a 1 online resource (294 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Qp-Pq: Quantum Probability & White Noise Analysis S. 
588 0 |a Print version record. 
505 8 |a CONCLUSIONBIBLIOGRAPHICAL NOTES; REFERENCES; QUANTUM PROBABILITY APPLIED TO THE DAMPED HARMONIC OSCILLATOR; 1. THE FRAMEWORK OF QUANTUM PROBABILITY; 2. SOME QUANTUM MECHANICS; 3. CONDITIONAL EXPECTATIONS AND OPERATIONS; 4. SECOND QUANTISATION; 5. UNITARY DILATIONS OF SPIRALING MOTION; 6. THE DAMPED HARMONIC OSCILLATOR; REFERENCES; QUANTUM PROBABILITY AND STRONG QUANTUM MARKOV PROCESSES; 0. INTRODUCTION; I. Quantum Probability; 1. A COMPARATIVE DESCRIPTION OF CLASSICAL AND QUANTUM PROBABILITY; 2. THE ROLE OF TENSOR PRODUCTS OF HILBERT SPACES; 3. SOME BASIC OPERATORS ON FOCK SPACES 
505 8 |a 4. FROM URN MODEL TO CANONICAL COMMUTATION RELATIONSII. Quantum Markov Processes; 5. STOCHASTIC OPERATORS ON C*-ALGEBRAS; 6. STINESPRING'S THEOREM; 7. EXTREME POINTS OF THE CONVEX SET OF STOCHASTIC OPERATORS; 8. STINESPRING'S THEOREM IN TWO STEPS; 9. CONSTRUCTION OF A QUANTUM MARKOV PROCESS; 10. THE CENTRAL PART OF MINIMAL DILATION; 11. ONE PARAMETER SEMIGROUPS OF STOCHASTIC MAPS ON A C*-ALGEBRA; III. Strong Markov Processes; 12. NONCOMMUTATIVE STOP TIMES; 13. MARKOV PROCESS AT SIMPLE STOP TIMES; 14. MINIMAL MARKOV FLOW AT SIMPLE STOP TIMES 
505 8 |a 15. STRONG MARKOV PROPERTY OF THE MINIMAL FLOW FOR A GENERAL STOP TIME16. STRONG MARKOV PROPERTY UNDER A SMOOTHNESS CONDITION; 17. A QUANTUM VERSION OF DYNKIN'S LOCALIZATION FORMULA; ACKNOWLEDGEMENTS; REFERENCES; LIMIT PROBLEMS FOR QUANTUM DYNAMICAL SEMIGROUPS -- INSPIRED BY SCATTERING THEORY; 0. INTRODUCTION; 1. COMPARISON OF THE LARGE TIME BEHAVIOUR OF TWO SEMIGROUPS; 2. THE CLASSIFICATION OF STATES; 3. ERGODIC PROPERTIES OF QUANTUM DYNAMICAL SEMIGROUPS; 4. CONVERGENCE TOWARDS THE EQUILIBRIUM; ACKNOWLEDGEMENT; REFERENCES; A SURVEY OF OPERATOR ALGEBRAS; 0. COMPLEX BANACH ALGEBRAS 
505 8 |a 1. C*-ALGEBRAS1.1. Definition and first spectral properties.; 1.2. Adding a unit.; 1.3. First examples: abelian C*-aIgebras.; 1.4. Continuous functional calculus in C*-algebras.; 1.5. More examples: B(H) and its sub-C*-algebras.; 1.6. Order Structure, states, and t h e GNS construction.; 1.6.1. Positive elements and order in A.; 1.6.2. Dual order structure and states.; 1.6.3. GNS construction.; 2. VON NEUMANN ALGEBRAS; 2.1. Some topologies on B(H).; 2.1.1. Three natural topologies.; 2.1.2. The ideal L1(H); 2.2. von Neuman algebras.; 2.2.1. von Neumann bicommutant theorem. 
520 |a Lecture notes from a Summer School on Quantum Probability held at the University of Grenoble are collected in these two volumes of the QP-PQ series. The articles have been refereed and extensively revised for publication. It is hoped that both current and future students of quantum probability will be engaged, informed and inspired by the contents of these two volumes. An extensive bibliography containing the references from all the lectures is included in Volume 12. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Markov processes. 
650 0 |a Probabilities. 
650 0 |a Quantum theory. 
650 0 |a Stochastic processes. 
650 6 |a Processus de Markov. 
650 6 |a Probabilités. 
650 6 |a Théorie quantique. 
650 6 |a Processus stochastiques. 
650 7 |a probability.  |2 aat 
650 7 |a Markov processes  |2 fast 
650 7 |a Probabilities  |2 fast 
650 7 |a Quantum theory  |2 fast 
650 7 |a Stochastic processes  |2 fast 
700 1 |a Lindsay, J. M. 
758 |i has work:  |a Quantum probability communications (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCG9XDGwxYqcYF33fMPGDVP  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Attal, S.  |t Quantum Probability Communications: Qp-Pq (Volumes 12).  |d Singapore : World Scientific Publishing Company, ©2003  |z 9789812389749 
830 0 |a Qp-Pq: Quantum Probability & White Noise Analysis S. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1223509  |z Texto completo 
938 |a EBL - Ebook Library  |b EBLB  |n EBL1223509 
994 |a 92  |b IZTAP