Cargando…

Exploring advanced Euclidean geometry with geogebra /

Exploring Advanced Euclidean Geometry with GeoGebra provides an inquiry-based introduction to advanced Euclidean geometry. It utilizes dynamic geometry software, specifically GeoGebra, to explore the statements and proofs of many of the most interesting theorems in the subject. Topics covered includ...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Venema, Gerard
Formato: Electrónico eBook
Idioma:Inglés
Publicado: [Place of publication not identified] : Mathematical Association of America, 2013.
Colección:Classroom resource materials.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBOOKCENTRAL_ocn854854032
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cnu---unuuu
008 130801s2013 xx ob 001 0 eng d
010 |z  2013938569 
040 |a N$T  |b eng  |e pn  |c N$T  |d YDXCP  |d E7B  |d JSTOR  |d OCLCF  |d OCLCQ  |d EBLCP  |d OCLCQ  |d AZK  |d LOA  |d AGLDB  |d CNNOR  |d MOR  |d PIFAG  |d ZCU  |d MERUC  |d OCLCQ  |d U3W  |d STF  |d WRM  |d OCLCQ  |d VTS  |d NRAMU  |d ICG  |d VT2  |d OCLCQ  |d WYU  |d A6Q  |d DKC  |d OCLCQ  |d M8D  |d HS0  |d OCLCQ  |d AJS  |d UCW  |d CUY  |d OCLCA  |d QGK  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCL 
019 |a 939263609  |a 961565846  |a 962647536  |a 966208200  |a 988515647  |a 991917673  |a 1037923964  |a 1038610726  |a 1045481811  |a 1055373294  |a 1058993493  |a 1065698273  |a 1081183422  |a 1083555255  |a 1097151306  |a 1196347810  |a 1198812184  |a 1228552943  |a 1259098552 
020 |a 9781614441113  |q (electronic bk.) 
020 |a 1614441111  |q (electronic bk.) 
020 |z 0883857847 
020 |z 9780883857847 
029 1 |a AU@  |b 000053309205 
029 1 |a DEBBG  |b BV043070540 
029 1 |a DEBBG  |b BV043624281 
029 1 |a DEBBG  |b BV044103502 
029 1 |a DEBSZ  |b 429972660 
029 1 |a NLGGC  |b 363636099 
029 1 |a NZ1  |b 15588878 
029 1 |a AU@  |b 000066762534 
035 |a (OCoLC)854854032  |z (OCoLC)939263609  |z (OCoLC)961565846  |z (OCoLC)962647536  |z (OCoLC)966208200  |z (OCoLC)988515647  |z (OCoLC)991917673  |z (OCoLC)1037923964  |z (OCoLC)1038610726  |z (OCoLC)1045481811  |z (OCoLC)1055373294  |z (OCoLC)1058993493  |z (OCoLC)1065698273  |z (OCoLC)1081183422  |z (OCoLC)1083555255  |z (OCoLC)1097151306  |z (OCoLC)1196347810  |z (OCoLC)1198812184  |z (OCoLC)1228552943  |z (OCoLC)1259098552 
037 |a 22573/ctt59h154  |b JSTOR 
050 4 |a QA445 
072 7 |a MAT  |x 012000  |2 bisacsh 
072 7 |a MAT012000  |2 bisacsh 
082 0 4 |a 516.2  |2 23 
049 |a UAMI 
100 1 |a Venema, Gerard. 
245 1 0 |a Exploring advanced Euclidean geometry with geogebra /  |c Gerard A. Venema. 
260 |a [Place of publication not identified] :  |b Mathematical Association of America,  |c 2013. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Classroom Resource Materials 
588 0 |a Print version record. 
505 0 |a Cover ; copyright page ; title page ; Preface; Contents; A Quick Review of Elementary Euclidean Geometry; Measurement and congruence; Angle addition; Triangles and triangle congruence conditions; Separation and continuity; The exterior angle theorem; Perpendicular lines and parallel lines; The Pythagorean theorem; Similar triangles; Quadrilaterals; Circles and inscribed angles; Area; The Elements of GeoGebra; Getting started: the GeoGebra toolbar; Simple constructions and the drag test; Measurement and calculation; Enhancing the sketch; The Classical Triangle Centers; Concurrent lines. 
505 8 |a Medians and the centroidAltitudes and the orthocenter; Perpendicular bisectors and the circumcenter; The Euler line; Advanced Techniques in GeoGebra; User-defined tools; Check boxes; The Pythagorean theorem revisited; Circumscribed, Inscribed, and Escribed Circles; The circumscribed circle and the circumcenter; The inscribed circle and the incenter; The escribed circles and the excenters; The Gergonne point and the Nagel point; Heron's formula; The Medial and Orthic Triangles; The medial triangle; The orthic triangle; Cevian triangles; Pedal triangles; Quadrilaterals; Basic definitions. 
505 8 |a Convex and crossed quadrilateralsCyclic quadrilaterals; Diagonals; The Nine-Point Circle; The nine-point circle; The nine-point center; Feuerbach's theorem; Ceva's Theorem; Exploring Ceva's theorem; Sensed ratios and ideal points; The standard form of Ceva's theorem; The trigonometric form of Ceva's theorem; The concurrence theorems; Isotomic and isogonal conjugates and the symmedian point; The Theorem of Menelaus; Duality; The theorem of Menelaus; Circles and Lines; The power of a point; The radical axis; The radical center; Applications of the Theorem of Menelaus. 
505 8 |a Tangent lines and angle bisectorsDesargues' theorem; Pascal's mystic hexagram; Brianchon's theorem; Pappus's theorem; Simson's theorem; Ptolemy's theorem; The butterfly theorem; Additional Topics in Triangle Geometry; Napoleon's theorem and the Napoleon point; The Torricelli point; van Aubel's theorem; Miquel's theorem and Miquel points; The Fermat point; Morley's theorem; Inversions in Circles; Inverting points; Inverting circles and lines; Othogonality; Angles and distances; The Poincaré Disk; The Poincaré disk model for hyperbolic geometry; The hyperbolic straightedge. 
505 8 |a Common perpendicularsThe hyperbolic compass; Other hyperbolic tools; Triangle centers in hyperbolic geometry; References; Index; About the Author. 
504 |a Includes bibliographical references and index. 
520 |a Exploring Advanced Euclidean Geometry with GeoGebra provides an inquiry-based introduction to advanced Euclidean geometry. It utilizes dynamic geometry software, specifically GeoGebra, to explore the statements and proofs of many of the most interesting theorems in the subject. Topics covered include triangle centers, inscribed, circumscribed, and escribed circles, medial and orthic triangles, the nine-point circle, duality, and the theorems of Ceva and Menelaus, as well as numerous applications of those theorems. The final chapter explores constructions in the Poincaré disk model for hyperbolic geometry. The book can be used either as a computer laboratory manual to supplement an undergraduate course in geometry or as a standalone introduction to advanced topics in Euclidean geometry. 
546 |a English. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Geometry, Modern. 
650 0 |a Geometry. 
650 6 |a Géométrie moderne. 
650 6 |a Géométrie. 
650 7 |a geometry.  |2 aat 
650 7 |a MATHEMATICS  |x Geometry  |x General.  |2 bisacsh 
650 7 |a Geometry  |2 fast 
650 7 |a Geometry, Modern  |2 fast 
758 |i has work:  |a Exploring Advanced Euclidean Geometry with GeoGebra (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFxMw6XbFpXRKfQbwk94bd  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Venema, Gerard A.  |t Exploring advanced euclidean geometry with geogebra.  |d [S.l.] : Mathematical Assn America, 2013  |z 0883857847  |w (OCoLC)846889721 
830 0 |a Classroom resource materials. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3330337  |z Texto completo 
938 |a EBL - Ebook Library  |b EBLB  |n EBL3330337 
938 |a ebrary  |b EBRY  |n ebr10722448 
938 |a EBSCOhost  |b EBSC  |n 578521 
938 |a YBP Library Services  |b YANK  |n 10710394 
994 |a 92  |b IZTAP