Sphere packings, lattices, and groups /
The third edition of this timely, definitive, and popular book continues to pursue the question: what is the most efficient way to pack a large number of equal spheres in n-dimensional Euclidean space? The authors also continue to examine related problems such as the kissing number problem, the cove...
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | Conway, John H. (John Horton) (Autor), Sloane, N. J. A. (Neil James Alexander), 1939- (Autor) |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
New York :
Springer,
©1999.
|
Edición: | Third edition. |
Colección: | Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics ;
290. |
Temas: | |
Acceso en línea: | Texto completo |
Ejemplares similares
-
Dense sphere packings : a blueprint for formal proofs.
por: Hales, Thomas Callister
Publicado: (2012) -
Random sequential packing of cubes /
por: Dutour Sikirić, Mathieu
Publicado: (2011) -
Random sequential packing of cubes /
por: Dutour Sikirić, Mathieu
Publicado: (2011) -
Least action principle of crystal formation of dense packing type and Kepler's conjecture /
por: Hsiang, Wu Yi, 1937-
Publicado: (2001) -
Codes on Euclidean spheres /
por: Ericson, Thomas
Publicado: (2001)