Cargando…

Sphere packings, lattices, and groups /

The third edition of this timely, definitive, and popular book continues to pursue the question: what is the most efficient way to pack a large number of equal spheres in n-dimensional Euclidean space? The authors also continue to examine related problems such as the kissing number problem, the cove...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Conway, John H. (John Horton) (Autor), Sloane, N. J. A. (Neil James Alexander), 1939- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York : Springer, ©1999.
Edición:Third edition.
Colección:Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics ; 290.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ma 4500
001 EBOOKCENTRAL_ocn854794089
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |||||||||||
008 111014s1999 nyua ob 001 0 eng d
040 |a TULIB  |b eng  |e pn  |c TULIB  |d OCLCO  |d SINTU  |d OCLCO  |d GW5XE  |d OCLCF  |d COO  |d OCLCQ  |d EBLCP  |d CUS  |d OCLCQ  |d YDX  |d UAB  |d OCLCQ  |d U3W  |d TKN  |d LEAUB  |d OCLCQ  |d UKBTH  |d OCLCQ  |d INARC  |d UKAHL  |d OCLCQ  |d VT2  |d K6U  |d SFB  |d OCLCO  |d OCLCQ  |d OCLCO  |d S9M 
019 |a 934976647  |a 968663338  |a 1113540646  |a 1151321811  |a 1262669371 
020 |a 9781475765687  |q (electronic bk.) 
020 |a 1475765681  |q (electronic bk.) 
020 |a 9781441931344  |q (print) 
020 |a 1441931341  |q (print) 
020 |z 0387985859 
020 |z 9780387985855 
024 7 |a 10.1007/978-1-4757-6568-7  |2 doi 
029 1 |a AU@  |b 000057646595 
029 1 |a NLGGC  |b 40194770X 
029 1 |a NZ1  |b 15182534 
029 1 |a AU@  |b 000074139574 
035 |a (OCoLC)854794089  |z (OCoLC)934976647  |z (OCoLC)968663338  |z (OCoLC)1113540646  |z (OCoLC)1151321811  |z (OCoLC)1262669371 
050 4 |a QA166.7  |b .C66 1999 
072 7 |a PBW.  |2 bicssc 
072 7 |a MAT003000.  |2 bisacsh 
082 0 4 |a 511/.6  |2 19 
084 |a 10E30  |2 msc 
084 |a 11T71  |2 msc 
084 |a 20E30  |2 msc 
084 |a 52A45  |2 msc 
084 |a 90Bxx  |2 msc 
084 |a 05B40  |2 msc 
049 |a UAMI 
100 1 |a Conway, John H.  |q (John Horton),  |e author. 
245 1 0 |a Sphere packings, lattices, and groups /  |c J.H. Conway, N.J.A. Sloane ; with additional contributions by E. Bannai [and others]. 
250 |a Third edition. 
260 |a New York :  |b Springer,  |c ©1999. 
300 |a 1 online resource (xxiv, 703 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
347 |b PDF 
490 1 |a Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics,  |x 0072-7830 ;  |v 290 
504 |a Includes bibliographical references (pages 574-679) and index. 
505 0 |a Preface to First Edition -- Preface to Third Edition -- List of Symbols -- Sphere Packings and Kissing Numbers -- Coverings, Lattices and Quantizers -- Codes, Designs, and Groups -- Certain Important Lattices and Their Properties -- Sphere Pakcking and Error-Correcting Codes -- Laminated Lattices -- Further Connections Between Codes and Lattices -- Algebraic Constructions for Lattices -- Bounds for Codes and Sphere Packings -- Three Lectures on Exceptional Groups -- The Golay Codes and the Mathieu Groups -- A Characterization of the Leech Lattice -- Bounds on Kissing Numbers -- Uniqueness of Certain Spherical Codes -- On the Classification of Integral Quadratic Forms -- Enumeration of Unimodular Lattices -- The 24-Dimensional Odd Unimodular Lattices -- Even Unimodular 24-Dimensional Lattices -- Enumeration of Extremal Self-Dual Lattices -- Finding the Closest Lattice Point -- Voronoi Cells of Lattices and Quantization Errors -- A Bound for the Covering Radius of the Leech Lattice. The Covering Radius of the Leech Lattice -- Twenty-Three Constructions for the Leech Lattice -- The Cellular Structure of the Leech Lattice -- Lorenzian Forms for the Leech Lattice -- The Automorphism Group of the 26-Dimensional Even Unimodular Lorenzian Lattice -- Leech Roots and Vinberg Groups -- The Moster Group and its 196885-Dimensional Space -- A Monster Lie Algebra? Bibliography. Supplemental Bibliography. 
520 |a The third edition of this timely, definitive, and popular book continues to pursue the question: what is the most efficient way to pack a large number of equal spheres in n-dimensional Euclidean space? The authors also continue to examine related problems such as the kissing number problem, the covering problem, the quantizing problem, and the classification of lattices and quadratic forms. Like the previous edition, the third edition describes the applications of these questions to other areas of mathematics and science such as number theory, coding theory, group theory, analog-to-digital conversion and data compression, n-dimensional crystallography, dual theory and superstring theory in physics. Of special interest to the third edtion is a brief report on some recent developments in the field and an updated and enlarged Supplementary Bibliography with over 800 items. 
546 |a English. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Sphere packings. 
650 0 |a Lattice theory. 
650 0 |a Finite groups. 
650 6 |a Empilements de sphères. 
650 6 |a Théorie des treillis. 
650 6 |a Groupes finis. 
650 7 |a Grupos finitos  |2 embne 
650 0 7 |a Retículos, Teoría de  |2 embucm 
650 7 |a Finite groups  |2 fast 
650 7 |a Lattice theory  |2 fast 
650 7 |a Sphere packings  |2 fast 
700 1 |a Sloane, N. J. A.  |q (Neil James Alexander),  |d 1939-  |e author. 
776 0 8 |i Printed edition:  |z 9781441931344 
830 0 |a Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics ;  |v 290.  |x 0072-7830 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3086120  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH29648226 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL3086120 
938 |a Internet Archive  |b INAR  |n spherepackingsla0000conw_b8u0 
938 |a YBP Library Services  |b YANK  |n 13357176 
994 |a 92  |b IZTAP