Cargando…

Proton transfer reaction mass spectrometry : principles and applications /

Proton Transfer Reaction Mass Spectrometry (PTR-MS) is a rapidly growing analytical technique for detecting and identifying very small quantities of chemical compounds in air. It has seen widespread use in atmospheric monitoring and food science and shows increasing promise in applications such as i...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Ellis, Andrew M. (Andrew Michael), 1963-
Otros Autores: Mayhew, Christopher A.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Chichester, West Sussex, UK : John Wiley & Sons, Inc., 2014.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Proton Transfer Reaction Mass Spectrometry; Contents; Preface; SECTION 1 PRINCIPLES; 1 Background; 1.1 Volatile Organic Compounds in the Earth's Atmosphere; 1.2 Volatile Organic Compounds in Other Environments; 1.3 Techniques for VOC Measurements; 1.3.1 Gas Chromatography; 1.3.2 Ion Mobility Spectrometry; 1.3.3 The Flowing Afterglow Technique; 1.3.4 The Selected Ion Flow Tube; 1.4 Emergence of Proton Transfer Reaction Mass Spectrometry; 1.4.1 Historical Background; 1.4.2 Compound Identification Using PTR-MS; 1.4.3 An Introduction to Quantitative Aspects of PTR-MS.
  • 1.4.4 A Comparison between PTR-MS and SIFT-MSReferences; 2 Chemical Ionization: Chemistry, Thermodynamics and Kinetics; 2.1 Introduction; 2.2 Proton Transfer; 2.2.1 Energy Units; 2.2.2 Thermodynamics of Proton Transfer; 2.2.3 Kinetics of Proton Transfer; 2.2.3.1 Background; 2.2.3.2 Theoretical Prediction of Proton Transfer Rate Coefficients; 2.2.3.3 Illustrative Calculations of Proton Transfer Rate Coefficients and Comparison with Experiment; 2.2.4 Reagents and Mechanisms; 2.2.4.1 Chemistry of H3O+ Reactions; 2.2.4.2 Reactions of Hydrated Hydronium Clusters; 2.2.4.3 Alternative Proton Donors.
  • 2.3 Other Chemical Ionization ProcessesReferences; 3 Experimental: Components and Principles; 3.1 Introduction; 3.2 Ion Extraction and Ion Optics; 3.2.1 Ion Acceleration; 3.2.2 Ion Steering; 3.2.3 Ion Lenses; 3.2.4 Simulation of Ion Trajectories; 3.3 Ion Sources; 3.3.1 Hollow Cathode Discharge Ion Source; 3.3.2 IonĐMolecule Chemistry Leading to H3O+ Production; 3.3.3 Alternative Ion Sources; 3.3.4 Generating Reagent Ions Other Than H3O+; 3.4 Drift Tubes; 3.4.1 Practical Aspects; 3.4.2 Ion Mobility and Transit Times; 3.4.3 IonĐMolecule Collision Energies; 3.4.4 Ion Cluster Distributions.
  • 3.5 Mass Spectrometry3.5.1 Some Important Definitions; 3.5.1.1 Ion Mass and Mass-to-Charge Ratio; 3.5.1.2 Mass Resolution; 3.5.1.3 Transmission and Dynamic Range; 3.5.2 Quadrupole Mass Spectrometry; 3.5.2.1 Basic Principles of the Quadrupole Mass Spectrometer; 3.5.2.2 Practical Issues; 3.5.3 Quadrupole Ion Trap Mass Spectrometry; 3.5.3.1 Basic Principles; 3.5.3.2 Collision-Induced Dissociation; 3.5.3.3 Three-Dimensional Quadrupole Ion Traps in PTR-MS; 3.5.3.4 The Linear Ion Trap in PTR-MS; 3.5.4 Time-of-flight Mass Spectrometry; 3.5.4.1 Basic Principles of TOF-MS.
  • 3.5.4.2 Improving the Resolution: Spatial Focusing3.5.4.3 Reflectron TOF-MS; 3.5.4.4 Mass Calibration in TOF-MS; 3.5.4.5 Advantages and Limitations of TOF-MS; 3.5.4.6 TOF-MS Analysers in PTR-MS; 3.6 Ion Detectors; 3.6.1 Discrete Dynode Detector; 3.6.2 Channel Electron Multiplier; 3.6.3 Microchannel Plate Detector; 3.7 Analogue versus Digital Signal Processing; References; 4 Quantitative Analysis; 4.1 Introduction; 4.2 Extracting the Concentration of a Trace Gas from PTR-MS; 4.3 Normalized Counts per Second; 4.4 Why Calibrate?; 4.5 Calibration Techniques; 4.5.1 Static Gas Calibration.