Cargando…

Proportionate-type normalized least mean square algorithms /

The topic of this book is proportionate-type normalized least mean squares (PtNLMS) adaptive filtering algorithms, which attempt to estimate an unknown impulse response by adaptively giving gains proportionate to an estimate of the impulse response and the current measured error. These algorithms of...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Wagner, Kevin
Otros Autores: Doroslovački, Miloš
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London, U.K. : Hoboken, N.J. : ISTE ; Wiley, 2013.
Colección:Focus series.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBOOKCENTRAL_ocn853501537
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cnu---unuuu
008 130723s2013 enka ob 001 0 eng d
010 |a  2013937864 
040 |a N$T  |b eng  |e pn  |c N$T  |d CUS  |d DG1  |d OCLCA  |d E7B  |d YDXCP  |d UMC  |d OCLCF  |d CDX  |d EBLCP  |d IDEBK  |d DEBSZ  |d DEBBG  |d OCLCQ  |d COO  |d OCLCQ  |d LOA  |d DG1  |d MOR  |d LIP  |d PIFPO  |d ZCU  |d MERUC  |d OCLCQ  |d U3W  |d MERER  |d COCUF  |d OCLCQ  |d STF  |d WRM  |d NRAMU  |d CRU  |d VTS  |d OCLCQ  |d INT  |d VT2  |d OCLCQ  |d WYU  |d G3B  |d TKN  |d OCLCQ  |d DKC  |d OCLCQ  |d UKAHL  |d OCLCQ  |d ELBRO  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCL 
019 |a 852758625  |a 862113117  |a 871664632  |a 961649774  |a 962642891  |a 992905472  |a 1055395645  |a 1065719007  |a 1081197491  |a 1228563161 
020 |a 9781118579251  |q (electronic bk.) 
020 |a 1118579259  |q (electronic bk.) 
020 |a 9781118579664  |q (electronic bk.) 
020 |a 1118579666  |q (electronic bk.) 
020 |a 9781118579558  |q (electronic bk.) 
020 |a 1118579550  |q (electronic bk.) 
020 |a 9781299732360  |q (MyiLibrary) 
020 |a 1299732364  |q (MyiLibrary) 
020 |z 9781848214705 
020 |z 1848214707 
029 1 |a AU@  |b 000051817011 
029 1 |a AU@  |b 000053043061 
029 1 |a CHBIS  |b 010441783 
029 1 |a CHNEW  |b 000635563 
029 1 |a CHNEW  |b 000942164 
029 1 |a CHVBK  |b 48022448X 
029 1 |a DEBBG  |b BV041292238 
029 1 |a DEBBG  |b BV041909017 
029 1 |a DEBBG  |b BV043396099 
029 1 |a DEBBG  |b BV044050353 
029 1 |a DEBSZ  |b 397581572 
029 1 |a DEBSZ  |b 401824659 
029 1 |a DEBSZ  |b 449369552 
029 1 |a DEBSZ  |b 485040212 
029 1 |a NZ1  |b 15341689 
035 |a (OCoLC)853501537  |z (OCoLC)852758625  |z (OCoLC)862113117  |z (OCoLC)871664632  |z (OCoLC)961649774  |z (OCoLC)962642891  |z (OCoLC)992905472  |z (OCoLC)1055395645  |z (OCoLC)1065719007  |z (OCoLC)1081197491  |z (OCoLC)1228563161 
037 |a 504487  |b MIL 
050 4 |a QA214  |b .W384 2013 
072 7 |a MAT  |x 000000  |2 bisacsh 
082 0 4 |a 511.8 
049 |a UAMI 
100 1 |a Wagner, Kevin. 
245 1 0 |a Proportionate-type normalized least mean square algorithms /  |c Kevin Wagner, Miloš Doroslovački. 
260 |a London, U.K. :  |b ISTE ;  |a Hoboken, N.J. :  |b Wiley,  |c 2013. 
300 |a 1 online resource (xiv, 177 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Focus series 
500 |a Includes index. 
588 0 |a Online resource; title from PDF title page (Wiley, viewed July 23, 2013). 
505 0 |a Title Page; Contents; Preface; Notation; Acronyms; Chapter 1. Introduction to PtNLMS Algorithms; 1.1. Applications motivating PtNLMS algorithms; 1.2. Historical review of existing PtNLMS algorithms; 1.3. Unified framework for representing PtNLMS algorithms; 1.4. Proportionate-type NLMS adaptive filtering algorithms; 1.4.1. Proportionate-type least mean square algorithm; 1.4.2. PNLMS algorithm; 1.4.3. PNLMS++ algorithm; 1.4.4. IPNLMS algorithm; 1.4.5. IIPNLMS algorithm; 1.4.6. IAF-PNLMS algorithm; 1.4.7. MPNLMS algorithm; 1.4.8. EPNLMS algorithm; 1.5. Summary. 
505 8 |a Chapter 2. LMS Analysis Techniques2.1. LMS analysis based on small adaptation step-size; 2.1.1. Statistical LMS theory: small step-size assumptions; 2.1.2. LMS analysis using stochastic difference equations with constant coefficients; 2.2. LMS analysis based on independent input signal assumptions; 2.2.1. Statistical LMS theory: independent input signal assumptions; 2.2.2. LMS analysis using stochastic difference equations with stochastic coefficients; 2.3. Performance of statistical LMS theory; 2.4. Summary; 3. PtNLMS Analysis Techniques. 
505 8 |a 3.1. Transient analysis of PtNLMS algorithm for white input3.1.1. Link between MSWD and MSE; 3.1.2. Recursive calculation of the MWD and MSWD for PtNLMS algorithms; 3.2. Steady-state analysis of PtNLMS algorithm: bias and MSWD calculation; 3.3. Convergence analysis of the simplified PNLMS algorithm; 3.3.1. Transient theory and results; 3.3.2. Steady-state theory and results; 3.4. Convergence analysis of the PNLMS algorithm; 3.4.1. Transient theory and results; 3.4.2. Steady-state theory and results; 3.5. Summary; 4. Algorithms Designed Based on Minimization of User-Defined Criteria. 
505 8 |a 4.1. PtNLMS algorithms with gain allocation motivated by MSE minimization for white input4.1.1. Optimal gain calculation resulting from MMSE; 4.1.2. Water-filling algorithm simplifications; 4.1.3. Implementation of algorithms; 4.1.4. Simulation results; 4.2. PtNLMS algorithm obtained by minimization of MSE modeled by exponential functions; 4.2.1. WD for proportionate-type steepest descent algorithm; 4.2.2. Water-filling gain allocation for minimization of the MSE modeled by exponential functions; 4.2.3. Simulation results. 
505 8 |a 4.3. PtNLMS algorithm obtained by minimization of the MSWD for colored input4.3.1. Optimal gain algorithm; 4.3.2. Relationship between minimization of MSE and MSWD; 4.3.3. Simulation results; 4.4. Reduced computational complexity suboptimal gain allocation for PtNLMS algorithm with colored input; 4.4.1. Suboptimal gain allocation algorithms; 4.4.2. Simulation results; 4.5. Summary; Chapter 5. Probability Density of WD for PtLMS Algorithms; 5.1. Proportionate-type least mean square algorithms; 5.1.1. Weight deviation recursion. 
520 |a The topic of this book is proportionate-type normalized least mean squares (PtNLMS) adaptive filtering algorithms, which attempt to estimate an unknown impulse response by adaptively giving gains proportionate to an estimate of the impulse response and the current measured error. These algorithms offer low computational complexity and fast convergence times for sparse impulse responses in network and acoustic echo cancellation applications. New PtNLMS algorithms are developed by choosing gains that optimize user-defined criteria, such as mean square error, at all times. PtNLMS algorithms ar. 
504 |a Includes bibliographical references and index. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Algorithms. 
650 0 |a Computer algorithms. 
650 0 |a Equations, Simultaneous  |x Numerical solutions. 
650 2 |a Algorithms 
650 6 |a Algorithmes. 
650 6 |a Systèmes d'équations  |x Solutions numériques. 
650 7 |a algorithms.  |2 aat 
650 7 |a MATHEMATICS  |x General.  |2 bisacsh 
650 7 |a Algorithms  |2 fast 
650 7 |a Computer algorithms  |2 fast 
650 7 |a Equations, Simultaneous  |x Numerical solutions  |2 fast 
700 1 |a Doroslovački, Miloš. 
758 |i has work:  |a Proportionate-type normalized least mean square algorithms (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFRcb3DdcP3hXYph9dpdHy  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Wagner, Kevin.  |t Proportionate-type normalized least mean square algorithms.  |d London, U.K. : ISTE ; Hoboken, N.J. : Wiley, 2013  |z 9781848214705  |w (OCoLC)853247222 
830 0 |a Focus series. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1272227  |z Texto completo 
938 |a eLibro  |b ELBO  |n ELB178713 
938 |a Askews and Holts Library Services  |b ASKH  |n AH25495430 
938 |a Askews and Holts Library Services  |b ASKH  |n AH25495433 
938 |a Coutts Information Services  |b COUT  |n 25835730 
938 |a EBL - Ebook Library  |b EBLB  |n EBL1272227 
938 |a ebrary  |b EBRY  |n ebr10731719 
938 |a EBSCOhost  |b EBSC  |n 606009 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis25835730 
938 |a YBP Library Services  |b YANK  |n 9984938 
938 |a YBP Library Services  |b YANK  |n 10845234 
938 |a YBP Library Services  |b YANK  |n 10845367 
994 |a 92  |b IZTAP