A Classical Introduction to Modern Number Theory /
Bridging the gap between elementary number theory and the systematic study of advanced topics, A Classical Introduction to Modern Number Theory is a well-developed and accessible text that requires only a familiarity with basic abstract algebra. Historical development is stressed throughout, along w...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
New York, NY :
Springer New York,
1990.
|
Edición: | Second edition. |
Colección: | Graduate texts in mathematics ;
84. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Unique Factorization
- Applications of Unique Factorization
- Congruence
- The Structure of U(Z/nZ)
- Quadratic Reciprocity
- Quadratic Gauss Sums
- Finite Fields
- Gauss and Jacobi Sums
- Cubic and Biquadratic Reciprocity
- Equations Over Finite Fields
- The Zeta Function
- Algebraic Number Theory
- Quadratic and Cyclotomic Fields
- The Stickelberger Relation and the Eisenstein Reciprocity Law
- Bernoulli Numbers
- Dirichlet L-Functions
- Diophantine Equations
- Elliptic Curves
- The Mordell-Weil Theorem
- New Progress in Arithmetic Geometry
- Selected Hints for the Exercises
- Bibliography
- Index.