Cargando…

Informatics for Materials Science and Engineering : Data-driven Discovery for Accelerated Experimentation and Application.

Materials informatics: a 'hot topic' area in materials science, aims to combine traditionally bio-led informatics with computational methodologies, supporting more efficient research by identifying strategies for time- and cost-effective analysis. The discovery and maturation of new materi...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Rajan, Krishna
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Elsevier Science & Technology, 2013.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ma 4500
001 EBOOKCENTRAL_ocn853240495
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|||||||||
008 130719s2013 xx o 000 0 eng d
040 |a IDEBK  |b eng  |e pn  |c IDEBK  |d CDX  |d EBLCP  |d COO  |d OCLCO  |d OCLCQ  |d UKDOC  |d OCLCF  |d OCLCQ  |d DEBSZ  |d OCLCQ  |d MYUSM  |d ZCU  |d MERUC  |d OCLCQ  |d ICG  |d AU@  |d OCLCQ  |d WYU  |d DKC  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
020 |a 1299733662  |q (ebk) 
020 |a 9781299733664  |q (ebk) 
020 |a 9780123946140  |q (electronic bk.) 
020 |a 012394614X  |q (electronic bk.) 
020 |a 9780123943996 
020 |a 012394399X 
029 1 |a AU@  |b 000054754701 
029 1 |a DEBBG  |b BV044176836 
029 1 |a DEBSZ  |b 431457859 
035 |a (OCoLC)853240495 
037 |a 504617  |b MIL 
050 4 |a TA 
082 0 4 |a 620.110285  |2 23 
049 |a UAMI 
100 1 |a Rajan, Krishna. 
245 1 0 |a Informatics for Materials Science and Engineering :  |b Data-driven Discovery for Accelerated Experimentation and Application. 
260 |b Elsevier Science & Technology,  |c 2013. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
505 0 |a Front Cover; Informatics for Materials Science and Engineering; Copyright Page; Contents; Preface: A Reading Guide; Acknowledgment; 1. Materials Informatics: An Introduction; 1. The What and Why of Informatics; 2. Learning from Systems Biology: An "Omics" Approach to Mater; 3. Where Do We Get the Information?; 4. Data Mining: Data-Driven Materials Research; References; 2. Data Mining in Materials Science and Engineering; 1. Introduction; 2. Analysis Needs of Science Applications; 3. The Scientific Data-Mining Process; 4. Image Analysis; 5. Dimension Reduction; 5.1 Feature Selection Techniques. 
505 8 |a Distance FilterChi-Squared Filter; Stump Filter; ReliefF; 5.2 Feature Transformation Techniques; Principal Component Analysis (PCA); Isomap; Locally Linear Embedding (LLE); Laplacian Eigenmaps; 5.3 Comparison of Dimension Reduction Methods; 6. Building Predictive and Descriptive Models; 6.1 Classification and Regression; 6.2 Clustering; 7. Further Reading; Acknowledgments; References; 3. Novel Approaches to Statistical Learning in Materials Science; 1. Introduction; 2. The Supervised Binary Classification Learning Problem; 3. Incorporating Side Information; 4. Conformal Prediction. 
505 8 |a 5. Optimal Learning6. Optimal Uncertainty Quantification; 7. Clustering Including Statistical Physics Approaches; 8. Materials Science Example: The Search for New Piezoelectrics; 9. Conclusion; 10. Further Reading; Acknowledgments; References; 4. Cluster Analysis: Finding Groups in Data; 1. Introduction; 2. Unsupervised Learning; 2.1 Principal Components Analysis; 2.2 Clustering; 3. Different Clustering Algorithms and their Implementations in R; 3.1 Agglomerative Hierarchical; 3.2 K-Means; 3.3 Divisive Hierarchical; 3.4 Partitioning Around Medoids (PAM); 3.5 Fuzzy Analysis (FANNY). 
505 8 |a 4. Validations of Clustering Results4.1 Dunn Index; 4.2 Silhouette Width; 4.3 Connectivity; 5. Rank Aggregation of Clustering Results; 6. Further Reading; Acknowledgments; References; 5. Evolutionary Data-Driven Modeling; 1. Preamble; 2. The Concept of Pareto Tradeoff; 3. Evolutionary Neural Net and Pareto Tradeoff; 4. Selecting the Appropriate Model in EvoNN; 5. Conventional Genetic Programming; 6. Bi-Objective Genetic Programming; 6.1 BioGP Code; 7. Analyzing the Variable Response in EvoNN and BioGP; 8. An Application in the Materials Area; 9. Further Reading; References. 
505 8 |a 6. Data Dimensionality Reduction in Materials Science1. Introduction; 2. Dimensionality Reduction: Basic Ideas and Taxonomy; 3. Dimensionality Reduction Methods: Algorithms, Advantages, and Disadvantages; 3.1 Principal Component Analysis (PCA); PCA Algorithm; 3.2 Isomap; Isomap Algorithm; 3.3 Locally Linear Embedding; LLE Algorithm; 3.4 Hessian LLE; hLLE Algorithm; 4. Dimensionality Estimators; 5. Software; 5.1 Core Functionality; 5.2 User Interface; 6. Analyzing Two Material Science Data Sets: Apatites and Organic Solar Cells; 6.1 Apatite Data; Dimensionality Estimation. 
520 |a Materials informatics: a 'hot topic' area in materials science, aims to combine traditionally bio-led informatics with computational methodologies, supporting more efficient research by identifying strategies for time- and cost-effective analysis. The discovery and maturation of new materials has been outpaced by the thicket of data created by new combinatorial and high throughput analytical techniques. The elaboration of this ""quantitative avalanche""--And the resulting complex, multi-factor analyses required to understand it-means that interest, investment, and research are revisi. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Materials science  |x Data processing. 
650 6 |a Science des matériaux  |x Informatique. 
650 7 |a Materials science  |x Data processing  |2 fast 
776 0 8 |i Print version:  |z 9781299733664 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1313393  |z Texto completo 
938 |a 123Library  |b 123L  |n 102683 
938 |a Coutts Information Services  |b COUT  |n 25835547 
938 |a EBL - Ebook Library  |b EBLB  |n EBL1313393 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis25835547 
994 |a 92  |b IZTAP