|
|
|
|
LEADER |
00000cam a2200000Mi 4500 |
001 |
EBOOKCENTRAL_ocn851823609 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr mnu---uuaaa |
008 |
130321s1992 nyu o 000 0 eng |
040 |
|
|
|a AU@
|b eng
|e pn
|c AU@
|d OCLCO
|d GW5XE
|d OCLCQ
|d OCLCF
|d UA@
|d COO
|d OCLCQ
|d EBLCP
|d OCLCQ
|d YDX
|d UAB
|d OCLCQ
|d U3W
|d TKN
|d LEAUB
|d OCLCQ
|d UKBTH
|d OCLCQ
|d UKAHL
|d OCLCQ
|d REDDC
|d VT2
|d K6U
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCL
|d S9M
|
019 |
|
|
|a 934975457
|a 968664670
|a 1113085087
|a 1258908377
|a 1258948890
|a 1262669683
|
020 |
|
|
|a 9781475742527
|q (electronic bk.)
|
020 |
|
|
|a 1475742525
|q (electronic bk.)
|
020 |
|
|
|z 9781441931016
|
020 |
|
|
|z 1441931015
|
020 |
|
|
|z 1475742525
|
024 |
7 |
|
|a 10.1007/978-1-4757-4252-7
|2 doi
|
029 |
0 |
|
|a AU@
|b 000051701775
|
029 |
1 |
|
|a NLGGC
|b 401946517
|
029 |
1 |
|
|a NZ1
|b 15182320
|
035 |
|
|
|a (OCoLC)851823609
|z (OCoLC)934975457
|z (OCoLC)968664670
|z (OCoLC)1113085087
|z (OCoLC)1258908377
|z (OCoLC)1258948890
|z (OCoLC)1262669683
|
050 |
|
4 |
|a QA564-609
|
072 |
|
7 |
|a PBMW
|2 bicssc
|
072 |
|
7 |
|a MAT012010
|2 bisacsh
|
082 |
0 |
4 |
|a 516.35
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Silverman, Joseph H.
|
245 |
1 |
0 |
|a Rational Points on Elliptic Curves /
|c by Joseph H. Silverman, John Tate.
|
260 |
|
|
|a New York, NY :
|b Springer New York,
|c 1992.
|
300 |
|
|
|a 1 online resource (x, 284 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|
347 |
|
|
|b PDF
|
490 |
1 |
|
|a Undergraduate Texts in Mathematics,
|x 0172-6056
|
520 |
|
|
|a The theory of elliptic curves involves a pleasing blend of algebra, geometry, analysis, and number theory. "Rational Points on Elliptic Curves" stresses this interplay as it develops the basic theory, thereby providing an opportunity for advance undergraduates to appreciate the unity of modern mathematics. At the same time, every effort has been made to use only methods and results commonly included in the undergraduate curriculum. This accessibility, the informal writing style, and a wealth of exercises make "Rational Points on Elliptic Curves" an ideal introduction for students at all levels who are interested in learning about Diophantine equations and arithmetic geometry.
|
505 |
0 |
|
|a I Geometry and Arithmetic -- II Points of Finite Order -- III The Group of Rational Points -- IV Cubic Curves over Finite Fields -- V Integer Points on Cubic Curves -- VI Complex Multiplication -- Appendix A Projective Geometry -- 1. Homogeneous Coordinates and the Projective Plane -- 2. Curves in the Projective Plane -- 3. Intersections of Projective Curves -- 4. Intersection Multiplicities and a Proof of Bezout's Theorem -- Exercises -- List of Notation.
|
546 |
|
|
|a English.
|
504 |
|
|
|a Includes bibliographical references and index.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Mathematics.
|
650 |
|
0 |
|a Geometry, Algebraic.
|
650 |
|
2 |
|a Mathematics
|
650 |
|
6 |
|a Mathématiques.
|
650 |
|
6 |
|a Géométrie algébrique.
|
650 |
|
7 |
|a Geometría algebraica
|2 embne
|
650 |
|
7 |
|a Matemáticas
|2 embne
|
650 |
|
7 |
|a Geometry, Algebraic
|2 fast
|
650 |
|
7 |
|a Mathematics
|2 fast
|
700 |
1 |
|
|a Tate, John.
|
758 |
|
|
|i has work:
|a Rational points on elliptic curves (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCFx637q34GpGPtMftDWPXq
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|z 9781441931016
|
830 |
|
0 |
|a Undergraduate texts in mathematics.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3085867
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH29490106
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL3085867
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 13357106
|
994 |
|
|
|a 92
|b IZTAP
|