Cargando…

Néron Models /

Néron models were invented by A. Néron in the early 1960s in order to study the integral structure of abelian varieties over number fields. Since then, arithmeticians and algebraic geometers have applied the theory of Néron models with great success. Quite recently, new developments in arithmetic...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Bosch, Siegfried
Otros Autores: Lütkebohmert, Werner, Raynaud, M. (Michel)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg, 1990.
Colección:Ergebnisse der Mathematik und ihrer Grenzgebiete, A Series of Modern Surveys in Mathematics ; 21.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBOOKCENTRAL_ocn851822593
003 OCoLC
005 20240329122006.0
006 m o d
007 cr mnu---uuaaa
008 121227s1990 gw a ob 001 0 eng
040 |a AU@  |b eng  |e pn  |c AU@  |d OCLCO  |d OCLCQ  |d GW5XE  |d OCLCQ  |d OCLCF  |d UA@  |d COO  |d OCLCQ  |d EBLCP  |d OCLCQ  |d YDX  |d UAB  |d OCLCQ  |d U3W  |d LEAUB  |d OCLCQ  |d K6U  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL  |d S9M 
019 |a 934982120  |a 968512570  |a 1012446560  |a 1058767705  |a 1086565102 
020 |a 9783642514388  |q (electronic bk.) 
020 |a 3642514383  |q (electronic bk.) 
020 |a 9783540505877 
020 |a 3540505873 
020 |z 9783642080739 
020 |z 3642080731 
024 7 |a 10.1007/978-3-642-51438-8  |2 doi 
029 0 |a AU@  |b 000051700046 
029 1 |a AU@  |b 000065099356 
029 1 |a NLGGC  |b 401959074 
029 1 |a NZ1  |b 14998576 
029 1 |a NZ1  |b 15332376 
029 1 |a AU@  |b 000069396509 
029 1 |a AU@  |b 000074440857 
035 |a (OCoLC)851822593  |z (OCoLC)934982120  |z (OCoLC)968512570  |z (OCoLC)1012446560  |z (OCoLC)1058767705  |z (OCoLC)1086565102 
050 4 |a QA564-609 
072 7 |a PBMW  |2 bicssc 
072 7 |a MAT012010  |2 bisacsh 
072 7 |a PBMW  |2 thema 
082 0 4 |a 516.35  |2 23 
049 |a UAMI 
100 1 |a Bosch, Siegfried. 
245 1 0 |a Néron Models /  |c by Siegfried Bosch, Werner Lütkebohmert, Michel Raynaud. 
260 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 1990. 
300 |a 1 online resource (x, 325 pages 4 illustrations) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Ergebnisse der Mathematik und ihrer Grenzgebiete, A Series of Modern Surveys in Mathematics,  |x 0071-1136 ;  |v 21 
520 |a Néron models were invented by A. Néron in the early 1960s in order to study the integral structure of abelian varieties over number fields. Since then, arithmeticians and algebraic geometers have applied the theory of Néron models with great success. Quite recently, new developments in arithmetic algebraic geometry have prompted a desire to understand more about Néron models, and even to go back to the basics of their construction. The authors have taken this as their incentive to present a comprehensive treatment of Néron models. This volume of the renowned "Ergebnisse" series provides a detailed demonstration of the construction of Néron models from the point of view of Grothendieck's algebraic geometry. In the second part of the book the relationship between Néron models and the relative Picard functor in the case of Jacobian varieties is explained. The authors helpfully remind the reader of some important standard techniques of algebraic geometry. A special chapter surveys the theory of the Picard functor. 
505 0 |a 1. What Is a Néron Model? -- 1.1 Integral Points -- 1.2 Néron Models -- 1.3 The Local Case: Main Existence Theorem -- 1.4 The Global Case: Abelian Varieties -- 1.5 Elliptic Curves -- 1.6 Néron's Original Article -- 2. Some Background Material from Algebraic Geometry -- 2.1 Differential Forms -- 2.2 Smoothness -- 2.3 Henselian Rings -- 2.4 Flatness -- 2.5 S-Rational Maps -- 3. The Smoothening Process -- 3.1 Statement of the Theorem -- 3.2 Dilatation -- 3.3 Néron's Measure for the Defect of Smoothness -- 3.4 Proof of the Theorem -- 3.5 Weak Néron Models -- 3.6 Algebraic Approximation of Formal Points -- 4. Construction of Birational Group Laws -- 4.1 Group Schemes -- 4.2 Invariant Differential Forms -- 4.3 R-Extensions of K-Group Laws -- 4.4 Rational Maps into Group Schemes -- 5. From Birational Group Laws to Group Schemes -- 5.1 Statement of the Theorem -- 5.2 Strict Birational Group Laws -- 5.3 Proof of the Theorem for a Strictly Henselian Base -- 6. Descent -- 6.1 The General Problem -- 6.2 Some Standard Examples of Descent -- 6.3 The Theorem of the Square -- 6.4 The Quasi-Projectivity of Torsors -- 6.5 The Descent of Torsors -- 6.6 Applications to Birational Group Laws -- 6.7 An Example of Non-Effective Descent -- 7. Properties of Néron Models -- 7.1 A Criterion -- 7.2 Base Change and Descent -- 7.3 Isogenies -- 7.4 Semi-Abelian Reduction -- 7.5 Exactness Properties -- 7.6 Weil Restriction -- 8. The Picard Functor -- 8.1 Basics on the Relative Picard Functor -- 8.2 Representability by a Scheme -- 8.3 Representability by an Algebraic Space -- 8.4 Properties -- 9. Jacobians of Relative Curves -- 9.1 The Degree of Divisors -- 9.2 The Structure of Jacobians -- 9.3 Construction via Birational Group Laws -- 9.4 Construction via Algebraic Spaces -- 9.5 Picard Functor and Néron Models of Jacobians -- 9.6 The Group of Connected Components of a Néron Model -- 9.7 Rational Singularities -- 10. Néron Models of Not Necessarily Proper Algebraic Groups -- 10.1 Generalities -- 10.2 The Local Case -- 10.3 The Global Case. 
504 |a Includes bibliographical references and index. 
546 |a English. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Mathematics. 
650 0 |a Geometry, Algebraic. 
650 2 |a Mathematics 
650 6 |a Mathématiques. 
650 6 |a Géométrie algébrique. 
650 7 |a Geometría algebraica  |2 embne 
650 7 |a Matemáticas  |2 embne 
650 7 |a Geometry, Algebraic  |2 fast 
650 7 |a Mathematics  |2 fast 
700 1 |a Lütkebohmert, Werner. 
700 1 |a Raynaud, M.  |q (Michel) 
758 |i has work:  |a Néron models (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGmQJdWrVwy3QmmbmY3683  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |z 9783642080739 
830 0 |a Ergebnisse der Mathematik und ihrer Grenzgebiete, A Series of Modern Surveys in Mathematics ;  |v 21. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3089336  |z Texto completo 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL3089336 
938 |a YBP Library Services  |b YANK  |n 13358709 
994 |a 92  |b IZTAP