Cargando…

Fundamentals of Biomechanics : Equilibrium, Motion, and Deformation /

Biomechanics applies the principles and rigor of engineering to the mechanical properties of living systems. This book integrates the classic fields of mechanics--statics, dynamics, and strength of materials--using examples from biology and medicine. Fundamentals of Biomechanics is excellent for tea...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Özkaya, Nihat
Otros Autores: Nordin, Margareta
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York, 1999.
Edición:Second edition.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • 1 Introduction
  • 2 Force Vector
  • 3 Moment and Torque
  • 4 Statics: Analyses of Systems in Equilibrium
  • 5 Applications of Statics to Biomechanics
  • 6 Introduction to Deformable Body Mechanics
  • 7 Stress and Strain
  • 8 Multiaxial Deformations and Stress Analyses
  • 9 Mechanical Properties of Biological Tissues
  • 10 Introduction to Dynamics
  • 11 Linear Kinematics
  • 12 Linear Kinetics
  • 13 Angular Kinematics
  • 14 Angular Kinetics
  • 15 Impulse and Momentum
  • Appendix A Plane Geometry
  • A.l Angles
  • A.2 Triangles
  • A.3 Law of Sines
  • A.4 The Right-Triangle
  • A.5 Pythagorean Theorem
  • A.6 Sine, Cosine, and Tangent
  • A.7 Inverse Sine, Cosine, and Tangent
  • Appendix B Vector Algebra
  • B.1 Definitions
  • B.2 Notation
  • B.3 Multiplication of a Vector by a Scalar
  • B.4 Negative Vector
  • B.5 Addition of Vectors: Graphical Methods
  • B.6 Subtraction of Vectors
  • B.7 Addition of More Than Two Vectors
  • B.8 Projection of Vectors
  • B.9 Resolution of Vectors
  • B.10 Unit Vectors
  • B.11 Rectangular Coordinates
  • B.12 Addition of Vectors: Trigonometric Method
  • B.13 Three-Dimensional Components of Vectors
  • B.14 Dot (Scalar) Product of Vectors
  • B.15 Cross (Vector) Product of Vectors
  • B.16 Exercise Problems
  • Appendix C Calculus
  • C.1 Functions
  • C.l.l Constant functions
  • C1.2 Power functions
  • C1.3 Linear functions
  • C1.4 Quadratic functions
  • C1.5 Polynomial functions
  • C1.6 Trigonometric functions
  • C1.7 Exponential and logarithmic functions / 365 C.2 The Derivative
  • C.2.1 Derivatives of basic functions
  • C.2.2 The constant multiple rule
  • C.2.3 The sum rule
  • C2.4 The product rule
  • C.2.5 The quotient rule
  • C.2.6 The chain rule
  • C.2.7 Implicit differentiation
  • C.2.8 Higher derivatives / 372 C.3 The Integral
  • C.3.1 Properties of indefinite integrals
  • C.3.2 Properties of definite integrals
  • C.3.3 Methods of integration
  • C.4 Trigonometric Identities Problems
  • C.5 The Quadratic Formula
  • C.6 Exercise Problems.