Cargando…

Physics of Quantum Electron Devices /

The ability to engineer the bandstructure and the wavefunction over length scales previously inaccessible to technology using artificially structured materials and nanolithography has led to a new class of electron semiconductor devices whose operation is controlled by quantum effects. These structu...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Capasso, Federico
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg, 1990.
Colección:Springer series in electronics and photonics ; 28.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • 1. Introduction
  • 1.1 A Perspective on the Evolution of Quantum Semiconductor Devices
  • 1.2 Outline of the Book
  • References
  • 2. The Nature of Molecular Beam Epitaxy and Consequences for Quantum Microstructures
  • 2.1 Dimensional Confinement and Device Concepts
  • 2.2 Molecular Beam Epitaxy
  • 2.3 The Surface Kinetic Processes and Computer Simulations of Growth
  • 2.4 Quantum Wells: Growth and Photoluminescence
  • 2.5 Concluding Remarks
  • 2.6 Recent Advances
  • References
  • 3. Nanolithography for Ultra-Small Structure Fabrication
  • 3.1 Overview
  • 3.2 Resolution Limits of Lithographic Processes
  • 3.3 Pattern Transfer
  • References
  • 4. Theory of Resonant Tunnelling and Surface Superlattices
  • 4.1 Tunnelling Probabilities
  • 4.2 Tunnelling Time
  • 4.3 Pseudo-Device Calculations
  • 4.4 Lateral Superlattices
  • References
  • 5. The Investigation of Single and Double Barrier (Resonant Tunnelling) Heterostructures Using High Magnetic Fields
  • 5.1 Background
  • 5.2 LO Phonon Structure in the I(V) and C(V) Curves of Reverse-Biased Heterostructures
  • 5.3 Magnetotunnelling from the 2D Electron Gas in Accumulated (InGa)As/InP Structures Grown by MBE and MOCVD
  • 5.4 Observation of Magnetoquantized Interface States by Electron Tunnelling in Single-Barrier n? (InGa)As/InP/n+ (InGa)As Heterostructures
  • 5.5 Box Quantised States
  • 5.6 Double Barrier Resonant Tunnelling Devices
  • References
  • 6. Microwave and Millimeter-Wave Resonant-Tunnelling Devices
  • 6.1 Speed of Response
  • 6.2 Resonant-Tunnelling Oscillators
  • 6.3 Self-Oscillating Mixers
  • 6.4 Resistive Multipliers
  • 6.5 Variable Absolute Negative Conductance
  • 6.6 Persistent Photoconductivity and a Resonant-Tunnelling Transistor
  • 6.7 A Look at Resonant-Tunnelling Theory
  • 6.8 Concluding Remarks
  • Note Added in Proof
  • List of Symbols
  • References
  • 7. Resonant Tunnelling and Superlattice Devices: Physics and Circuits
  • 7.1 Resonant Tunnelling Through Double Barriers and Superlattices
  • 7.2 Application of Resonant Tunnelling: Transistors and Circuits
  • References
  • 8. Resonant-Tunnelling Hot Electron Transistors (RHET)
  • 8.1 RHET Operation
  • 8.2 RHET Technology Using GaAs/AlGaAs Heterostructures
  • 8.3 InGaAs-Based Material Evaluation
  • 8.4 RHET Technology Using InGaAs-Based Materials
  • 8.5 Theoretical Analyses of RHET Performance
  • 8.6 Summary
  • References
  • 9. Ballistic Electron Transport in Hot Electron Transistors
  • 9.1 Ballistic Transport
  • 9.2 Hot Electron Transistors
  • 9.3 Hot Electron Injectors
  • 9.4 Energy Spectroscopy
  • 9.5 Electron Coherent Effects in the THETA Device
  • 9.6 Transfer to the L Satellite Valleys
  • 9.7 The THETA as a Practical Device
  • References
  • 10. Quantum Interference Devices
  • 10.1 Background
  • 10.2 Two-Port Quantum Devices
  • 10.3 Multiport Quantum Devices
  • Appendix: Aharonov
  • Bohm Phase-shift in an Electric or Magnetic Field
  • References
  • Additional References
  • 11. Carrier Confinement to One and Zero Degrees of Freedom
  • 11.1 Experimental Methods
  • 11.2 Discussion of Experimental Results
  • 11.3 Conclusions
  • References
  • 12. Quantum Effects in Quasi-One-Dimensional MOSFETs
  • 12.1 Background
  • 12.2 MOSFET Length Scales
  • 12.3 Special MOSFET Geometries
  • 12.4 Strictly 1D Transport
  • 12.5 Multichannel Transport (Particle in a Box?)
  • 12.6 Averaged Quantum Diffusion
  • 12.7 Mesoscopic Quantum Diffusion (Universal Conductance Fluctuations)
  • 12.8 Effect of One Scatterer
  • 12.9 Conclusion
  • References.