Physics of Quantum Electron Devices /
The ability to engineer the bandstructure and the wavefunction over length scales previously inaccessible to technology using artificially structured materials and nanolithography has led to a new class of electron semiconductor devices whose operation is controlled by quantum effects. These structu...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Berlin, Heidelberg :
Springer Berlin Heidelberg,
1990.
|
Colección: | Springer series in electronics and photonics ;
28. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- 1. Introduction
- 1.1 A Perspective on the Evolution of Quantum Semiconductor Devices
- 1.2 Outline of the Book
- References
- 2. The Nature of Molecular Beam Epitaxy and Consequences for Quantum Microstructures
- 2.1 Dimensional Confinement and Device Concepts
- 2.2 Molecular Beam Epitaxy
- 2.3 The Surface Kinetic Processes and Computer Simulations of Growth
- 2.4 Quantum Wells: Growth and Photoluminescence
- 2.5 Concluding Remarks
- 2.6 Recent Advances
- References
- 3. Nanolithography for Ultra-Small Structure Fabrication
- 3.1 Overview
- 3.2 Resolution Limits of Lithographic Processes
- 3.3 Pattern Transfer
- References
- 4. Theory of Resonant Tunnelling and Surface Superlattices
- 4.1 Tunnelling Probabilities
- 4.2 Tunnelling Time
- 4.3 Pseudo-Device Calculations
- 4.4 Lateral Superlattices
- References
- 5. The Investigation of Single and Double Barrier (Resonant Tunnelling) Heterostructures Using High Magnetic Fields
- 5.1 Background
- 5.2 LO Phonon Structure in the I(V) and C(V) Curves of Reverse-Biased Heterostructures
- 5.3 Magnetotunnelling from the 2D Electron Gas in Accumulated (InGa)As/InP Structures Grown by MBE and MOCVD
- 5.4 Observation of Magnetoquantized Interface States by Electron Tunnelling in Single-Barrier n? (InGa)As/InP/n+ (InGa)As Heterostructures
- 5.5 Box Quantised States
- 5.6 Double Barrier Resonant Tunnelling Devices
- References
- 6. Microwave and Millimeter-Wave Resonant-Tunnelling Devices
- 6.1 Speed of Response
- 6.2 Resonant-Tunnelling Oscillators
- 6.3 Self-Oscillating Mixers
- 6.4 Resistive Multipliers
- 6.5 Variable Absolute Negative Conductance
- 6.6 Persistent Photoconductivity and a Resonant-Tunnelling Transistor
- 6.7 A Look at Resonant-Tunnelling Theory
- 6.8 Concluding Remarks
- Note Added in Proof
- List of Symbols
- References
- 7. Resonant Tunnelling and Superlattice Devices: Physics and Circuits
- 7.1 Resonant Tunnelling Through Double Barriers and Superlattices
- 7.2 Application of Resonant Tunnelling: Transistors and Circuits
- References
- 8. Resonant-Tunnelling Hot Electron Transistors (RHET)
- 8.1 RHET Operation
- 8.2 RHET Technology Using GaAs/AlGaAs Heterostructures
- 8.3 InGaAs-Based Material Evaluation
- 8.4 RHET Technology Using InGaAs-Based Materials
- 8.5 Theoretical Analyses of RHET Performance
- 8.6 Summary
- References
- 9. Ballistic Electron Transport in Hot Electron Transistors
- 9.1 Ballistic Transport
- 9.2 Hot Electron Transistors
- 9.3 Hot Electron Injectors
- 9.4 Energy Spectroscopy
- 9.5 Electron Coherent Effects in the THETA Device
- 9.6 Transfer to the L Satellite Valleys
- 9.7 The THETA as a Practical Device
- References
- 10. Quantum Interference Devices
- 10.1 Background
- 10.2 Two-Port Quantum Devices
- 10.3 Multiport Quantum Devices
- Appendix: Aharonov
- Bohm Phase-shift in an Electric or Magnetic Field
- References
- Additional References
- 11. Carrier Confinement to One and Zero Degrees of Freedom
- 11.1 Experimental Methods
- 11.2 Discussion of Experimental Results
- 11.3 Conclusions
- References
- 12. Quantum Effects in Quasi-One-Dimensional MOSFETs
- 12.1 Background
- 12.2 MOSFET Length Scales
- 12.3 Special MOSFET Geometries
- 12.4 Strictly 1D Transport
- 12.5 Multichannel Transport (Particle in a Box?)
- 12.6 Averaged Quantum Diffusion
- 12.7 Mesoscopic Quantum Diffusion (Universal Conductance Fluctuations)
- 12.8 Effect of One Scatterer
- 12.9 Conclusion
- References.