|
|
|
|
LEADER |
00000cam a2200000Mi 4500 |
001 |
EBOOKCENTRAL_ocn851784191 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr mnu---uuaaa |
008 |
121227s1994 gw a o 000 0 eng |
040 |
|
|
|a AU@
|b eng
|e pn
|c AU@
|d OCLCO
|d OCLCQ
|d GW5XE
|d OCLCF
|d UA@
|d OCLCQ
|d EBLCP
|d OCLCQ
|d UAB
|d OCLCQ
|d U3W
|d AU@
|d OCLCQ
|d LEAUB
|d UKBTH
|d OCLCQ
|d K6U
|d OCLCO
|d OCLCQ
|d OCLCO
|d S9M
|d OCLCL
|
019 |
|
|
|a 934982480
|a 1086444237
|a 1113710782
|
020 |
|
|
|a 9783642579516
|q (electronic bk.)
|
020 |
|
|
|a 3642579515
|q (electronic bk.)
|
020 |
|
|
|z 9783540576181
|
020 |
|
|
|z 3540576185
|
024 |
7 |
|
|a 10.1007/978-3-642-57951-6
|2 doi
|
029 |
0 |
|
|a AU@
|b 000051695493
|
029 |
1 |
|
|a NZ1
|b 14999326
|
029 |
1 |
|
|a NZ1
|b 15618668
|
029 |
1 |
|
|a AU@
|b 000069423459
|
035 |
|
|
|a (OCoLC)851784191
|z (OCoLC)934982480
|z (OCoLC)1086444237
|z (OCoLC)1113710782
|
050 |
|
4 |
|a QA641-670
|
072 |
|
7 |
|a PBMP
|2 bicssc
|
072 |
|
7 |
|a MAT012030
|2 bisacsh
|
072 |
|
7 |
|a PBMP
|2 thema
|
082 |
0 |
4 |
|a 516.36
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Carmo, Manfredo P.
|
245 |
1 |
0 |
|a Differential Forms and Applications /
|c by Manfredo P. Carmo.
|
260 |
|
|
|a Berlin, Heidelberg :
|b Springer Berlin Heidelberg,
|c 1994.
|
300 |
|
|
|a 1 online resource (x, 118 pages 18 illustrations)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|
347 |
|
|
|b PDF
|
490 |
1 |
|
|a Universitext,
|x 0172-5939
|
520 |
|
|
|a The book treats differential forms and uses them to study some local and global aspects of the differential geometry of surfaces. Differential forms are introduced in a simple way that will make them attractive to "users" of mathematics. A brief and elementary introduction to differentiable manifolds is given so that the main theorem, namely the Stokes' theorem, can be presented in its natural setting. The applications consist in developing the method of moving frames of E. Cartan to study the local differential geometry of immersed surfaces in R3 as well as the intrinsic geometry of surfaces. Everything is then put together in the last chapter to present Chern's proof of the Gauss-Bonnet theorem for compact surfaces
|
505 |
0 |
|
|a 1. Differential Forms in Rn -- 2. Line Integrals -- 3. Differentiable Manifolds -- 4. Integration on Manifolds; Stokes Theorem and Poincaré's Lemma -- 1. Integration of Differential Forms -- 2. Stokes Theorem -- 3. Poincaré's Lemma -- 5. Differential Geometry of Surfaces -- 1. The Structure Equations of Rn -- 2. Surfaces in R3 -- 3. Intrinsic Geometry of Surfaces -- 6. The Theorem of Gauss-Bonnet and the Theorem of Morse -- 1. The Theorem of Gauss-Bonnet -- 2. The Theorem of Morse -- References.
|
546 |
|
|
|a English.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Mathematics.
|
650 |
|
0 |
|a Global analysis (Mathematics)
|
650 |
|
0 |
|a Global differential geometry.
|
650 |
|
0 |
|a Mathematical physics.
|
650 |
|
2 |
|a Mathematics
|
650 |
|
6 |
|a Mathématiques.
|
650 |
|
6 |
|a Analyse globale (Mathématiques)
|
650 |
|
6 |
|a Géométrie différentielle globale.
|
650 |
|
6 |
|a Physique mathématique.
|
650 |
|
7 |
|a Análisis global (Matemáticas)
|2 embne
|
650 |
|
7 |
|a Física matemática
|2 embne
|
650 |
|
7 |
|a Global analysis (Mathematics)
|2 fast
|
650 |
|
7 |
|a Global differential geometry
|2 fast
|
650 |
|
7 |
|a Mathematical physics
|2 fast
|
650 |
|
7 |
|a Mathematics
|2 fast
|
758 |
|
|
|i has work:
|a Differential forms and applications (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCXy7mWjbHmjVXDT6d79rC3
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|z 9783540576181
|
830 |
|
0 |
|a Universitext.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3089646
|z Texto completo
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL3089646
|
994 |
|
|
|a 92
|b IZTAP
|