Cargando…

Ideals, Varieties, and Algorithms : an Introduction to Computational Algebraic Geometry and Commutative Algebra /

Algebraic Geometry is the study of systems of polynomial equations in one or more variables, asking such questions as: Does the system have finitely many solutions, and if so how can one find them? And if there are infinitely many solutions, how can they be described and manipulated? The solutions o...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Cox, David (Autor), Little, John (Autor), O'Shea, Donal (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York, 1997.
Edición:Second edition.
Colección:Undergraduate texts in mathematics.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_ocn851783933
003 OCoLC
005 20240329122006.0
006 m o d
007 cr mnu---uuaaa
008 130305s1997 nyu o 000 0 eng
040 |a AU@  |b eng  |e rda  |e pn  |c AU@  |d OCLCO  |d GW5XE  |d OCLCQ  |d GW5XE  |d OCLCF  |d COO  |d OCLCQ  |d EBLCP  |d CUS  |d OCLCQ  |d UAB  |d OCLCQ  |d U3W  |d OCLCQ  |d YDXIT  |d OCL  |d OCLCO  |d VT2  |d K6U  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d S9M 
019 |a 934973323  |a 1262679143 
020 |a 9781475726930  |q (electronic bk.) 
020 |a 1475726937  |q (electronic bk.) 
020 |a 9783662411544  |q (electronic bk.) 
020 |a 3662411547  |q (electronic bk.) 
020 |z 9781475726954 
020 |z 1475726953 
024 7 |a 10.1007/978-1-4757-2693-0  |2 doi 
029 0 |a AU@  |b 000051694801 
029 1 |a AU@  |b 000058395287 
029 1 |a AU@  |b 000060367950 
029 1 |a AU@  |b 000065095832 
029 1 |a NLGGC  |b 401223418 
029 1 |a NLGGC  |b 401971643 
029 1 |a NZ1  |b 14988876 
029 1 |a NZ1  |b 15350404 
029 1 |a AU@  |b 000069423458 
035 |a (OCoLC)851783933  |z (OCoLC)934973323  |z (OCoLC)1262679143 
050 4 |a QA564  |b .C69 1997 
072 7 |a PBC  |2 bicssc 
072 7 |a PBCD  |2 bicssc 
072 7 |a MAT018000  |2 bisacsh 
082 0 4 |a 516.352  |2 23 
049 |a UAMI 
100 1 |a Cox, David,  |e author. 
245 1 0 |a Ideals, Varieties, and Algorithms :  |b an Introduction to Computational Algebraic Geometry and Commutative Algebra /  |c by David Cox, John Little, Donal O'Shea. 
250 |a Second edition. 
264 1 |a New York, NY :  |b Springer New York,  |c 1997. 
300 |a 1 online resource (xiii, 538 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
347 |b PDF 
490 1 |a Undergraduate Texts in Mathematics,  |x 0172-6056 
505 0 |a Geometry, Algebra, and Algorithms -- Groebner Bases -- Elimination Theory -- The Algebra-Geometry Dictionary -- Polynomial and Rational Functions on a Variety -- Robotics and Automatic Geometric Theorem Proving -- Invariant Theory of Finite Groups -- Projective Algebraic Geometry -- The Dimension of a Variety -- Some Concepts from Algebra -- Pseudocode -- Computer Algebra Systems -- Independent Projects. 
520 |a Algebraic Geometry is the study of systems of polynomial equations in one or more variables, asking such questions as: Does the system have finitely many solutions, and if so how can one find them? And if there are infinitely many solutions, how can they be described and manipulated? The solutions of a system of polynomial equations form a geometric object called a variety; the corresponding algebraic object is an ideal. There is a close relationship between ideals and varieties which reveals the intimate link between algebra and geometry. Written at a level appropriate to undergraduates, this book covers such topics as the Hilbert Basis Theorem, the Nullstellensatz, invariant theory, projective geometry, and dimension theory. The algorithms to answer questions such as those posed above are an important part of algebraic geometry. This book bases its discussion of algorithms on a generalization of the division algorithm for polynomials in one variable that was only discovered in the 1960's. Although the algorithmic roots of algebraic geometry are old, the computational aspects were neglected earlier in this century. This has changed in recent years, and new algorithms, coupled with the power of fast computers, have let to some interesting applications, for example in robotics and in geometric theorem proving. In preparing a new edition of Ideals, Varieties and Algorithms the authors present an improved proof of the Buchberger Criterion as well as a proof of Bezout's Theorem. Appendix C contains a new section on Axiom and an update about Maple, Mathematica and REDUCE. 
588 0 |a Online resource; title from digital title page (viewed on March 27, 2020). 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Geometry, Algebraic  |x Data processing. 
650 0 |a Commutative algebra  |x Data processing. 
650 6 |a Géométrie algébrique  |x Informatique. 
650 6 |a Algèbre commutative  |x Informatique. 
650 7 |a Matemáticas  |2 embne 
650 7 |a Geometry, Algebraic  |x Data processing  |2 fast 
650 7 |a Commutative algebra  |x Data processing  |2 fast 
650 7 |a Logic, Symbolic and mathematical  |2 fast 
650 7 |a Mathematics  |2 fast 
700 1 |a Little, John,  |e author. 
700 1 |a O'Shea, Donal,  |e author. 
776 0 8 |i Print version:  |z 9781475726954 
830 0 |a Undergraduate texts in mathematics. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3084218  |z Texto completo 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL3084218 
994 |a 92  |b IZTAP