Mathematical Logic /
This junior/senior level text is devoted to a study of first-order logic and its role in the foundations of mathematics: What is a proof? How can a proof be justified? To what extent can a proof be made a purely mechanical procedure? How much faith can we have in a proof that is so complex that no o...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
New York, NY :
Springer New York,
1994.
|
Edición: | Second edition. |
Colección: | Undergraduate texts in mathematics.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- A
- I Introduction
- II Syntax of First-Order Languages
- III Semantics of First-Order Languages
- IV A Sequent Calculus
- V The Completeness Theorem
- VI The Löwenheim-Skolem and the Compactness Theorem
- VII The Scope of First-Order Logic
- VIII Syntactic Interpretations and Normal Forms
- B
- IX Extensions of First-Order Logic
- X Limitations of the Formal Method
- XI Free Models and Logic Programming
- XII An Algebraic Characterization of Elementary Equivalence
- XIII Lindström's Theorems
- References
- Symbol Index.