Cargando…

Mathematical Logic /

This junior/senior level text is devoted to a study of first-order logic and its role in the foundations of mathematics: What is a proof? How can a proof be justified? To what extent can a proof be made a purely mechanical procedure? How much faith can we have in a proof that is so complex that no o...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Ebbinghaus, H.-D
Otros Autores: Flum, J., Thomas, W.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York, 1994.
Edición:Second edition.
Colección:Undergraduate texts in mathematics.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBOOKCENTRAL_ocn851760204
003 OCoLC
005 20240329122006.0
006 m o d
007 cr mnu---uuaaa
008 130109s1994 nyu o 000 0 eng
040 |a AU@  |b eng  |e pn  |c AU@  |d OCLCO  |d GW5XE  |d OCLCQ  |d OCLCF  |d UA@  |d COO  |d OCLCQ  |d EBLCP  |d OCLCQ  |d UAB  |d OCLCQ  |d U3W  |d TKN  |d LEAUB  |d OCLCQ  |d UKBTH  |d OCLCQ  |d UKAHL  |d OCLCQ  |d VT2  |d K6U  |d SFB  |d OCLCO  |d OCLCQ  |d OCLCO  |d S9M  |d OCLCL 
019 |a 934973889  |a 1113110442  |a 1262682765 
020 |a 9781475723557  |q (electronic bk.) 
020 |a 1475723555  |q (electronic bk.) 
020 |z 9781475723571 
020 |z 1475723571 
020 |z 1475723555 
024 7 |a 10.1007/978-1-4757-2355-7  |2 doi 
029 0 |a AU@  |b 000051692128 
029 1 |a NLGGC  |b 40122306X 
029 1 |a NZ1  |b 14988792 
029 1 |a NZ1  |b 15330087 
029 1 |a AU@  |b 000074442064 
035 |a (OCoLC)851760204  |z (OCoLC)934973889  |z (OCoLC)1113110442  |z (OCoLC)1262682765 
050 4 |a QA8.9-10.3 
072 7 |a PBC  |2 bicssc 
072 7 |a PBCD  |2 bicssc 
072 7 |a MAT018000  |2 bisacsh 
082 0 4 |a 511.3  |2 23 
084 |a 03-01  |2 msc 
049 |a UAMI 
100 1 |a Ebbinghaus, H.-D. 
245 1 0 |a Mathematical Logic /  |c by H.-D. Ebbinghaus, J. Flum, W. Thomas. 
250 |a Second edition. 
260 |a New York, NY :  |b Springer New York,  |c 1994. 
300 |a 1 online resource (x, 290 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
347 |b PDF 
490 1 |a Undergraduate Texts in Mathematics,  |x 0172-6056 
520 |a This junior/senior level text is devoted to a study of first-order logic and its role in the foundations of mathematics: What is a proof? How can a proof be justified? To what extent can a proof be made a purely mechanical procedure? How much faith can we have in a proof that is so complex that no one can follow it through in a lifetime? The first substantial answers to these questions have only been obtained in this century. The most striking results are contained in Goedel's work: First, it is possible to give a simple set of rules that suffice to carry out all mathematical proofs; but, second, these rules are necessarily incomplete - it is impossible, for example, to prove all true statements of arithmetic. The book begins with an introduction to first-order logic, Goedel's theorem, and model theory. A second part covers extensions of first-order logic and limitations of the formal methods. The book covers several advanced topics, not commonly treated in introductory texts, such as Trachtenbrot's undecidability theorem. Fraissé's elementary equivalence, and Lindstroem's theorem on the maximality of first-order logic. 
505 0 |a A -- I Introduction -- II Syntax of First-Order Languages -- III Semantics of First-Order Languages -- IV A Sequent Calculus -- V The Completeness Theorem -- VI The Löwenheim-Skolem and the Compactness Theorem -- VII The Scope of First-Order Logic -- VIII Syntactic Interpretations and Normal Forms -- B -- IX Extensions of First-Order Logic -- X Limitations of the Formal Method -- XI Free Models and Logic Programming -- XII An Algebraic Characterization of Elementary Equivalence -- XIII Lindström's Theorems -- References -- Symbol Index. 
546 |a English. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Mathematics. 
650 0 |a Logic, Symbolic and mathematical. 
650 6 |a Mathématiques. 
650 6 |a Logique symbolique et mathématique. 
650 7 |a applied mathematics.  |2 aat 
650 7 |a mathematics.  |2 aat 
650 7 |a Matemáticas  |2 embne 
650 7 |a Logic, Symbolic and mathematical  |2 fast 
650 7 |a Mathematics  |2 fast 
700 1 |a Flum, J. 
700 1 |a Thomas, W. 
758 |i has work:  |a Mathematical logic (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGWvFYppbywchPvfRbWmtX  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |z 9781475723571 
830 0 |a Undergraduate texts in mathematics. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3084680  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH29489874 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL3084680 
994 |a 92  |b IZTAP