Cargando…

The Nature of Statistical Learning Theory /

The aim of this book is to discuss the fundamental ideas which lie behind the statistical theory of learning and generalization. It considers learning from the general point of view of function estimation based on empirical data. Omitting proofs and technical details, the author concentrates on disc...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Vapnik, Vladimir N.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York, 1995.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBOOKCENTRAL_ocn851741749
003 OCoLC
005 20240329122006.0
006 m o d
007 cr mnu---uuaaa
008 130402s1995 nyu ob 001 0 eng
040 |a AU@  |b eng  |e pn  |c AU@  |d OCLCO  |d GW5XE  |d OCLCQ  |d OCLCF  |d COO  |d OCLCQ  |d EBLCP  |d OCLCQ  |d YDX  |d UAB  |d OCLCQ  |d U3W  |d OCLCQ  |d LEAUB  |d UKBTH  |d OCLCQ  |d UKAHL  |d REDDC  |d K6U  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 934974037  |a 968649340  |a 1058148411  |a 1086538594  |a 1113746465  |a 1258905387  |a 1258949779 
020 |a 9781475724400  |q (electronic bk.) 
020 |a 1475724403  |q (electronic bk.) 
020 |z 9781475724424 
020 |z 147572442X 
020 |z 1475724403 
024 7 |a 10.1007/978-1-4757-2440-0  |2 doi 
029 0 |a AU@  |b 000051689365 
029 1 |a NLGGC  |b 401223140 
029 1 |a NZ1  |b 15182061 
035 |a (OCoLC)851741749  |z (OCoLC)934974037  |z (OCoLC)968649340  |z (OCoLC)1058148411  |z (OCoLC)1086538594  |z (OCoLC)1113746465  |z (OCoLC)1258905387  |z (OCoLC)1258949779 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
072 7 |a PBWL  |2 thema 
082 0 4 |a 519.2  |2 23 
049 |a UAMI 
100 1 |a Vapnik, Vladimir N. 
245 1 4 |a The Nature of Statistical Learning Theory /  |c by Vladimir N. Vapnik. 
260 |a New York, NY :  |b Springer New York,  |c 1995. 
300 |a 1 online resource (xv, 188 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
347 |b PDF 
505 0 |a Introduction -- Setting of the Learning Problem -- Consistency of Learning Processes -- Bounds on the Rate of Convergence of Learning Processes -- Controlling the Generalization Ability of Learning Processes -- Constructing Learning Algorithms -- What is Important in Learning Theory?- References. -- Index. 
520 |a The aim of this book is to discuss the fundamental ideas which lie behind the statistical theory of learning and generalization. It considers learning from the general point of view of function estimation based on empirical data. Omitting proofs and technical details, the author concentrates on discussing the main results of learning theory and their connections to fundamental problems in statistics. These include: - the general setting of learning problems and the general model of minimizing the risk functional from empirical data - a comprehensive analysis of the empirical risk minimization principle and shows how this allows for the construction of necessary and sufficient conditions for consistency - non-asymptotic bounds for the risk achieved using the empirical risk minimization principle - principles for controlling the generalization ability of learning machines using small sample sizes - introducing a new type of universal learning machine that controls the generalization ability. 
504 |a Includes bibliographical references and index. 
546 |a English. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Mathematics. 
650 0 |a Artificial intelligence. 
650 0 |a Distribution (Probability theory) 
650 0 |a Statistics. 
650 6 |a Mathématiques. 
650 6 |a Intelligence artificielle. 
650 6 |a Distribution (Théorie des probabilités) 
650 6 |a Statistique. 
650 7 |a mathematics.  |2 aat 
650 7 |a applied mathematics.  |2 aat 
650 7 |a artificial intelligence.  |2 aat 
650 7 |a distribution (statistics-related concept)  |2 aat 
650 7 |a statistics.  |2 aat 
650 7 |a Artificial intelligence  |2 fast 
650 7 |a Distribution (Probability theory)  |2 fast 
650 7 |a Mathematics  |2 fast 
650 7 |a Statistics  |2 fast 
776 0 8 |i Print version:  |z 9781475724424 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3084784  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH29489887 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL3084784 
938 |a YBP Library Services  |b YANK  |n 13356859 
994 |a 92  |b IZTAP