Cargando…

High Performance Materials in Aerospace /

Aerospace presents an extremely challenging environment for structural materials and the development of new, or improved, materials: processes for material and for component production are the subject of continuous research activity. It is in the nature of high performance materials that the steps o...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Flower, Harvey M.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Dordrecht : Springer Netherlands, 1995.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • 1 Design requirements for aerospace structural materials
  • 1.1 Introduction
  • 1.2 Properties that affect structural efficiency ab initio
  • 1.3 Properties affecting cost of ownership
  • 1.4 Cost-effective design
  • 1.5 Concluding remarks
  • References
  • 2 Aluminium alloys: physical metallurgy, processing andproperties
  • 2.1 Introduction
  • 2.2 Aluminium alloys: processing and properties
  • 2.3 Conventional aerospace aluminium alloys
  • 2.4 Advanced aerospace aluminium alloys
  • 2.5 Conclusions
  • References
  • Further reading
  • 3 Titanium alloys: production, behaviour and application
  • 3.1 Introduction
  • 3.2 Brief summary of the metallurgy of conventional Ti alloys
  • 3.3 The production of Ti alloys and Ti alloy components
  • 3.4 The mechanical behaviour and properties of commonTi alloys
  • 3.5 Ti-based intermetallic compounds
  • 3.6 Summary
  • Acknowledgements
  • References
  • Further reading
  • 4 Nickel-based alloys: recent developments for the aero-gasturbine
  • 4.1 Background
  • 4.2 Alloy constitution and development trends
  • 4.3 Processing developments
  • 4.4 Microstructure and high temperature deformation
  • 4.5 Turbine disk applications
  • 4.6 Future prospects
  • References
  • 5 Structural steels
  • 5.1 Introduction
  • 5.2 Gear steels
  • 5.3 Bearing steels
  • 5.4 Ultra high strength steels
  • Acknowledgements
  • References
  • 6 Ceramic materials in aerospace
  • 6.1 Introduction
  • 6.2 Monolithic and toughened ceramics
  • 6.3 Composite ceramics
  • 7 Polymeric-based composite materials
  • 7.1 Introduction
  • 7.2 Reinforcements
  • 7.3 Matrices
  • 7.4 Interface
  • 7.5 Processing
  • 7.6 Properties
  • 7.7 Joining composites
  • 7.8 Non-destructive testing (NDT)
  • 7.9 Advantages of composite materials
  • 8 Metal-based composite materials
  • 8.1 Introduction
  • 8.2 Metal
  • ceramic composites
  • 8.3 Laminates
  • 8.4 Cost
  • 8.5 Applications
  • 8.6 Appendix
  • References
  • 9 Superplastic forming
  • 9.1 Introduction
  • 9.2 Superplasticity and its characteristics
  • 9.3 Aerospace superplastic alloys
  • 9.4 Post-superplastic straining mechanical properties
  • 9.5 Superplastic forming (SPF)
  • 9.6 Advantages of SPF in aerospace structural design/manufacture
  • 9.7 Aerospace applications of SPF
  • 9.8 SPF/DB
  • 9.9 Advantages of SPF/DB in aerospace structural design/manufacture
  • 9.10 Aerospace applications of SPF/DB
  • 9.11 Background to the application of SPF and SPF/DB in aerospace
  • References
  • 10 Joining advanced materials by diffusion bonding
  • 10.1 Introduction
  • 10.2 Diffusion bonding mechanisms
  • 10.3 Effect of surface roughness and contamination on bondinterface defects
  • 10.4 Testing of diffusion bonded joints
  • 10.5 Diffusion bonding techniques of metals
  • 10.6 Diffusion bonding of intermetallics
  • 10.7 Diffusion bonding of ceramics
  • 10.8 Diffusion bonding of composites
  • 10.9 Diffusion bonding of dissimilar metallic materials
  • 10.10 Diffusion bonding of metastable alloys
  • 10.11 Manufacture of components by diffusion bonding techniques
  • 10.12 Conclusions
  • Acknowledgements
  • References
  • 11 Adhesive bonding for aerospace applications
  • 11.1 Introduction
  • 11.2 Bonded wooden aircraft
  • 11.3 Principles of bonding
  • 11.4 Aerospace adhesive types
  • 11.5 Surface treatments
  • 11.6 Design of bonded joints
  • References
  • 12 Rapid solidification and powder technologies for aerospace
  • 12.1 Introduction
  • 12.2 Production technologies
  • 12.3 Effects on microstructure
  • 12.4 Benefits of rapid solidification foraerospace applications
  • 12.5 Conclusions
  • References
  • 13 Hot isostatic processing
  • 13.1 Introduction
  • 13.2 Removal of porosity
  • 13.3 Benefits of HIP
  • 13.4 Applications of HIP
  • 13.5 Powder products
  • 13.6 Diffusion bonding
  • 13.7 Other applications.