Cargando…

High Performance Materials in Aerospace /

Aerospace presents an extremely challenging environment for structural materials and the development of new, or improved, materials: processes for material and for component production are the subject of continuous research activity. It is in the nature of high performance materials that the steps o...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Flower, Harvey M.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Dordrecht : Springer Netherlands, 1995.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBOOKCENTRAL_ocn851389682
003 OCoLC
005 20240329122006.0
006 m o d
007 cr mnu---uuaaa
008 121227s1995 ne o 000 0 eng
040 |a AU@  |b eng  |e pn  |c AU@  |d GW5XE  |d OCLCQ  |d OCLCF  |d UA@  |d COO  |d OCLCQ  |d EBLCP  |d AU@  |d LEAUB  |d OCLCQ  |d VT2  |d K6U  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 1262684756 
020 |a 9789401106856  |q (electronic bk.) 
020 |a 9401106851  |q (electronic bk.) 
020 |z 9789401042963 
020 |z 9401042969 
020 |z 9401106851 
024 7 |a 10.1007/978-94-011-0685-6  |2 doi 
029 0 |a AU@  |b 000051667225 
029 1 |a NZ1  |b 15013671 
029 1 |a NZ1  |b 15327715 
029 1 |a AU@  |b 000074122529 
035 |a (OCoLC)851389682  |z (OCoLC)1262684756 
050 4 |a TL1-483 
072 7 |a TRC  |2 bicssc 
072 7 |a TRCS  |2 bicssc 
072 7 |a TEC009090  |2 bisacsh 
082 0 4 |a 629.2  |2 23 
049 |a UAMI 
100 1 |a Flower, Harvey M. 
245 1 0 |a High Performance Materials in Aerospace /  |c edited by Harvey M. Flower. 
260 |a Dordrecht :  |b Springer Netherlands,  |c 1995. 
300 |a 1 online resource (xi, 382 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a 1 Design requirements for aerospace structural materials -- 1.1 Introduction -- 1.2 Properties that affect structural efficiency ab initio -- 1.3 Properties affecting cost of ownership -- 1.4 Cost-effective design -- 1.5 Concluding remarks -- References -- 2 Aluminium alloys: physical metallurgy, processing andproperties -- 2.1 Introduction -- 2.2 Aluminium alloys: processing and properties -- 2.3 Conventional aerospace aluminium alloys -- 2.4 Advanced aerospace aluminium alloys -- 2.5 Conclusions -- References -- Further reading -- 3 Titanium alloys: production, behaviour and application -- 3.1 Introduction -- 3.2 Brief summary of the metallurgy of conventional Ti alloys -- 3.3 The production of Ti alloys and Ti alloy components -- 3.4 The mechanical behaviour and properties of commonTi alloys -- 3.5 Ti-based intermetallic compounds -- 3.6 Summary -- Acknowledgements -- References -- Further reading -- 4 Nickel-based alloys: recent developments for the aero-gasturbine -- 4.1 Background -- 4.2 Alloy constitution and development trends -- 4.3 Processing developments -- 4.4 Microstructure and high temperature deformation -- 4.5 Turbine disk applications -- 4.6 Future prospects -- References -- 5 Structural steels -- 5.1 Introduction -- 5.2 Gear steels -- 5.3 Bearing steels -- 5.4 Ultra high strength steels -- Acknowledgements -- References -- 6 Ceramic materials in aerospace -- 6.1 Introduction -- 6.2 Monolithic and toughened ceramics -- 6.3 Composite ceramics -- 7 Polymeric-based composite materials -- 7.1 Introduction -- 7.2 Reinforcements -- 7.3 Matrices -- 7.4 Interface -- 7.5 Processing -- 7.6 Properties -- 7.7 Joining composites -- 7.8 Non-destructive testing (NDT) -- 7.9 Advantages of composite materials -- 8 Metal-based composite materials -- 8.1 Introduction -- 8.2 Metal -- ceramic composites -- 8.3 Laminates -- 8.4 Cost -- 8.5 Applications -- 8.6 Appendix -- References -- 9 Superplastic forming -- 9.1 Introduction -- 9.2 Superplasticity and its characteristics -- 9.3 Aerospace superplastic alloys -- 9.4 Post-superplastic straining mechanical properties -- 9.5 Superplastic forming (SPF) -- 9.6 Advantages of SPF in aerospace structural design/manufacture -- 9.7 Aerospace applications of SPF -- 9.8 SPF/DB -- 9.9 Advantages of SPF/DB in aerospace structural design/manufacture -- 9.10 Aerospace applications of SPF/DB -- 9.11 Background to the application of SPF and SPF/DB in aerospace -- References -- 10 Joining advanced materials by diffusion bonding -- 10.1 Introduction -- 10.2 Diffusion bonding mechanisms -- 10.3 Effect of surface roughness and contamination on bondinterface defects -- 10.4 Testing of diffusion bonded joints -- 10.5 Diffusion bonding techniques of metals -- 10.6 Diffusion bonding of intermetallics -- 10.7 Diffusion bonding of ceramics -- 10.8 Diffusion bonding of composites -- 10.9 Diffusion bonding of dissimilar metallic materials -- 10.10 Diffusion bonding of metastable alloys -- 10.11 Manufacture of components by diffusion bonding techniques -- 10.12 Conclusions -- Acknowledgements -- References -- 11 Adhesive bonding for aerospace applications -- 11.1 Introduction -- 11.2 Bonded wooden aircraft -- 11.3 Principles of bonding -- 11.4 Aerospace adhesive types -- 11.5 Surface treatments -- 11.6 Design of bonded joints -- References -- 12 Rapid solidification and powder technologies for aerospace -- 12.1 Introduction -- 12.2 Production technologies -- 12.3 Effects on microstructure -- 12.4 Benefits of rapid solidification foraerospace applications -- 12.5 Conclusions -- References -- 13 Hot isostatic processing -- 13.1 Introduction -- 13.2 Removal of porosity -- 13.3 Benefits of HIP -- 13.4 Applications of HIP -- 13.5 Powder products -- 13.6 Diffusion bonding -- 13.7 Other applications. 
520 |a Aerospace presents an extremely challenging environment for structural materials and the development of new, or improved, materials: processes for material and for component production are the subject of continuous research activity. It is in the nature of high performance materials that the steps of material and of component production should not be considered in isolation from one another. Indeed, in some cases, the very process of material production may also incorporate part or all of the component production itself and, at the very least, will influence the choice of material/component production method to be employed. HowƯ ever, the developments currently taking place are to be discovered largely within the confines of specialist conferences or books each dedicated to perhaps a single element of the overall process. In this book contributors, experts drawn from both academia and the aerospace industry, have joined together to combine their individual knowledge to examine high performance aerospace materials in terms of their production, structure, properties and applications. The central interrelationships between the development of structure through the production route and between structure and the properties exhibited in the final component are considered. It is hoped that the book will be of interest to students of aeronautical engineering and of materials science, together with those working within the aerospace industry. Harvey M. Flower Imperial College 1 Design requirements for aerospace structural materials C.J. Peel and P.J. Gregson 1. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Engineering. 
650 6 |a Ingénierie. 
650 7 |a engineering.  |2 aat 
650 7 |a Engineering  |2 fast 
758 |i has work:  |a High Performance Materials in Aerospace (Text)  |1 https://id.oclc.org/worldcat/entity/E39PD3p6MJJcwcDBwKXqxtvjFq  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |z 9789401042963 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3108942  |z Texto completo 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL3108942 
994 |a 92  |b IZTAP