Cargando…

Percolation /

Percolation theory is the study of an idealized random medium in two or more dimensions. It is a cornerstone of the theory of spatial stochastic processes with applications in such fields as statistical physics, epidemiology, and the spread of populations. Percolation plays a pivotal role in studyin...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Grimmett, Geoffrey
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg, 1999.
Edición:Second edition.
Colección:Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics ; 321.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBOOKCENTRAL_ocn851383131
003 OCoLC
005 20240329122006.0
006 m o d
007 cr mnu---uuaaa
008 130107s1999 gw o 000 0 eng
040 |a AU@  |b eng  |e pn  |c AU@  |d GW5XE  |d OCLCQ  |d OCLCF  |d COO  |d OCLCQ  |d EBLCP  |d OCLCQ  |d XPJ  |d YDX  |d UAB  |d OCLCQ  |d U3W  |d LEAUB  |d OCLCQ  |d UKBTH  |d OCLCQ  |d UKAHL  |d VT2  |d K6U  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 934995253  |a 936317281  |a 968669197  |a 1113464007  |a 1262685576 
020 |a 9783662039816  |q (electronic bk.) 
020 |a 3662039818  |q (electronic bk.) 
020 |z 9783642084423 
020 |z 3642084427 
020 |z 3662039818 
020 |z 3540649026 
020 |z 9783540649021 
024 7 |a 10.1007/978-3-662-03981-6  |2 doi 
029 0 |a AU@  |b 000051664458 
029 1 |a NZ1  |b 15005960 
029 1 |a NZ1  |b 15326822 
029 1 |a AU@  |b 000073105656 
035 |a (OCoLC)851383131  |z (OCoLC)934995253  |z (OCoLC)936317281  |z (OCoLC)968669197  |z (OCoLC)1113464007  |z (OCoLC)1262685576 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.2  |2 23 
049 |a UAMI 
100 1 |a Grimmett, Geoffrey. 
245 1 0 |a Percolation /  |c by Geoffrey Grimmett. 
250 |a Second edition. 
260 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 1999. 
300 |a 1 online resource (xiii, 447 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
347 |b PDF 
490 1 |a Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics,  |x 0072-7830 ;  |v 321 
505 0 |a What is Percolation?- Some Basic Techniques -- Critical Probabilities -- The Number of Open Clusters per Vertex -- Exponential Decay -- The Subcritical Phase -- Dynamic and Static Renormalization -- The Supercritical Phase -- Near the Critical Point: Scaling Theory -- Near the Critical Point: Rigorous Results -- Bond Percolation in Two Dimensions -- Extensions of Percolation -- Percolative Systems. 
520 |a Percolation theory is the study of an idealized random medium in two or more dimensions. It is a cornerstone of the theory of spatial stochastic processes with applications in such fields as statistical physics, epidemiology, and the spread of populations. Percolation plays a pivotal role in studying more complex systems exhibiting phase transition. The mathematical theory is mature, but continues to give rise to problems of special beauty and difficulty. The emphasis of this book is upon core mathematical material and the presentation of the shortest and most accessible proofs. The book is intended for graduate students and researchers in probability and mathematical physics. Almost no specialist knowledge is assumed beyond undergraduate analysis and probability. This new volume differs substantially from the first edition through the inclusion of much new material, including: the rigorous theory of dynamic and static renormalization; a sketch of the lace expansion and mean field theory; the uniqueness of the infinite cluster; strict inequalities between critical probabilities; several essays on related fields and applications; numerous other results of significant. There is a summary of the hypotheses of conformal invariance. A principal feature of the process is the phase transition. The subcritical and supercritical phases are studied in detail. There is a guide for mathematicians to the physical theory of scaling and critical exponents, together with selected material describing the current state of the rigorous theory. To derive a rigorous theory of the phase transition remains an outstanding and beautiful problem of mathematics. 
546 |a English. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Mathematics. 
650 0 |a Combinatorial analysis. 
650 0 |a Distribution (Probability theory) 
650 6 |a Mathématiques. 
650 6 |a Analyse combinatoire. 
650 6 |a Distribution (Théorie des probabilités) 
650 7 |a mathematics.  |2 aat 
650 7 |a applied mathematics.  |2 aat 
650 7 |a distribution (statistics-related concept)  |2 aat 
650 7 |a Combinatorial analysis  |2 fast 
650 7 |a Distribution (Probability theory)  |2 fast 
650 7 |a Mathematics  |2 fast 
776 0 8 |i Print version:  |z 9783642084423 
830 0 |a Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics ;  |v 321. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3098573  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH29634452 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL3098573 
938 |a YBP Library Services  |b YANK  |n 13364742 
994 |a 92  |b IZTAP