Cargando…

Random Iterative Models /

The recent development of computation and automation has lead to quick advances in the theory and practice of recursive methods for stabilization, identification and control of complex stochastic models (guiding a rocket or a plane, orgainizing multiaccess broadcast channels, self-learning of neural...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Duflo, Marie
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg, 1997.
Colección:Stochastic modelling and applied probability ; 34.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBOOKCENTRAL_ocn851369305
003 OCoLC
005 20240329122006.0
006 m o d
007 cr mnu---uuaaa
008 130305s1997 gw o 000 0 eng
040 |a AU@  |b eng  |e pn  |c AU@  |d GW5XE  |d OCLCQ  |d OCLCF  |d UA@  |d COO  |d OCLCQ  |d EBLCP  |d OCLCQ  |d YDX  |d UAB  |d OCLCQ  |d U3W  |d LEAUB  |d OCLCQ  |d UKBTH  |d OCLCQ  |d VT2  |d K6U  |d OCLCO  |d OCLCQ  |d OCL  |d OCLCO  |d OCLCL 
019 |a 934998886  |a 936319330  |a 1112923439  |a 1262685941 
020 |a 9783662128800  |q (electronic bk.) 
020 |a 3662128802  |q (electronic bk.) 
020 |z 9783642081750 
020 |z 3642081754 
020 |z 3662128802 
024 7 |a 10.1007/978-3-662-12880-0  |2 doi 
029 0 |a AU@  |b 000051655693 
029 1 |a NLGGC  |b 401970949 
029 1 |a NZ1  |b 15006677 
029 1 |a NZ1  |b 15309065 
035 |a (OCoLC)851369305  |z (OCoLC)934998886  |z (OCoLC)936319330  |z (OCoLC)1112923439  |z (OCoLC)1262685941 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.2  |2 23 
049 |a UAMI 
100 1 |a Duflo, Marie. 
245 1 0 |a Random Iterative Models /  |c by Marie Duflo. 
260 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 1997. 
300 |a 1 online resource (xv, 387 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
347 |b PDF 
490 1 |a Stochastic Modelling and Applied Probability,  |x 0172-4568 ;  |v 34 
520 |a The recent development of computation and automation has lead to quick advances in the theory and practice of recursive methods for stabilization, identification and control of complex stochastic models (guiding a rocket or a plane, orgainizing multiaccess broadcast channels, self-learning of neural networks ...). This book provides a wide-angle view of those methods: stochastic approximation, linear and non-linear models, controlled Markov chains, estimation and adaptive control, learning ... Mathematicians familiar with the basics of Probability and Statistics will find here a self-contained account of many approaches to those theories, some of them classical, some of them leading up to current and future research. Each chapter can form the core material for a course of lectures. Engineers having to control complex systems can discover new algorithms with good performances and reasonably easy computation. 
505 0 |a I. Sources of Recursive Methods -- 1. Traditional Problems -- 2. Rate of Convergence -- 3. Current Problems -- II. Linear Models -- 4. Causality and Excitation -- 5. Linear Identification and Tracking -- III. Nonlinear Models -- 6. Stability -- 7. Nonlinear Identification and Control -- IV. Markov Models -- 8. Recurrence -- 9. Learning. 
546 |a English. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Mathematics. 
650 0 |a Algorithms. 
650 0 |a Distribution (Probability theory) 
650 0 |a Computer algorithms. 
650 6 |a Mathématiques. 
650 6 |a Algorithmes. 
650 6 |a Distribution (Théorie des probabilités) 
650 7 |a mathematics.  |2 aat 
650 7 |a applied mathematics.  |2 aat 
650 7 |a algorithms.  |2 aat 
650 7 |a distribution (statistics-related concept)  |2 aat 
650 7 |a Computer algorithms  |2 fast 
650 7 |a Algorithms  |2 fast 
650 7 |a Distribution (Probability theory)  |2 fast 
650 7 |a Mathematics  |2 fast 
758 |i has work:  |a Random iterative models (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCH7KXxmDKCP4cBFG464VP3  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |z 9783642081750 
830 0 |a Stochastic modelling and applied probability ;  |v 34. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3100395  |z Texto completo 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL3100395 
938 |a YBP Library Services  |b YANK  |n 13365776 
994 |a 92  |b IZTAP