|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
EBOOKCENTRAL_ocn851089287 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr un||||||||| |
008 |
130627s2007 riu ob 001 0 eng d |
040 |
|
|
|a GZM
|b eng
|e pn
|c GZM
|d OCLCO
|d COO
|d UIU
|d OCLCF
|d N$T
|d LLB
|d E7B
|d YDXCP
|d OCLCQ
|d EBLCP
|d DEBSZ
|d OCLCQ
|d LEAUB
|d UKAHL
|d OCLCQ
|d K6U
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCL
|
019 |
|
|
|a 922981509
|
020 |
|
|
|a 9781470404949
|q (electronic bk.)
|
020 |
|
|
|a 147040494X
|q (electronic bk.)
|
020 |
|
|
|z 9780821839911
|q (alk. paper)
|
020 |
|
|
|z 0821839918
|q (alk. paper)
|
029 |
1 |
|
|a AU@
|b 000062344184
|
029 |
1 |
|
|a DEBSZ
|b 452551404
|
035 |
|
|
|a (OCoLC)851089287
|z (OCoLC)922981509
|
050 |
|
4 |
|a QA371
|b .C435 2007
|
072 |
|
7 |
|a MAT
|x 005000
|2 bisacsh
|
072 |
|
7 |
|a MAT
|x 034000
|2 bisacsh
|
082 |
0 |
4 |
|a 515/.355
|2 22
|
084 |
|
|
|a 31.44
|2 bcl
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Chalkley, Roger,
|d 1931-
|1 https://id.oclc.org/worldcat/entity/E39PBJB8wbT6mbmFrWJKDr8grq
|
245 |
1 |
0 |
|a Basic global relative invariants for nonlinear differential equations /
|c Roger Chalkley.
|
260 |
|
|
|a Providence, R.I. :
|b American Mathematical Society,
|c ©2007.
|
300 |
|
|
|a 1 online resource (xii, 365 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Memoirs of the American Mathematical Society,
|x 1947-6221 ;
|v v. 888
|
500 |
|
|
|a "November 2007, volume 190, number 888 (first of three numbers)."
|
504 |
|
|
|a Includes bibliographical references (pages 357-358) and index.
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
0 |
|t Part 1. Foundations for a general theory
|t 1. Introduction
|t 2. The coefficients $c^*_{i, j}(z)$ of (1.3)
|t 3. The coefficients $c^{**}_{i, j}(\zeta)$ of (1.5)
|t 4. Isolated results needed for completeness
|t 5. Composite transformations and reductions
|t 6. Related Laguerre-Forsyth canonical forms
|t Part 2. The basic relative invariants for $Q_m=0$ when $m\ge 2$
|t 7. Formulas that involve $L_{i, j}(z)$
|t 8. Basic semi-invariants of the first kind for $m \geq 2$
|t 9. Formulas that involve $V_{i, j}(z)$
|t 10. Basic semi-invariants of the second kind for $m \geq 2$
|t 11. The existence of basic relative invariants
|t 12. The uniqueness of basic relative invariants
|t 13. Real-valued functions of a real variable
|t Part 3. Supplementary results
|t 14. Relative invariants via basic ones for $m \geq 2$
|t 15. Results about $Q_m$ as a quadratic form
|t 16. Machine computations
|t 17. The simplest of the Fano-type problems for (1.1)
|t 18. Paul Appell's condition of solvability for $Q_m = 0$
|t 19. Appell's condition for $Q_2 = 0$ and related topics
|t 20. Rational semi-invariants and relative invariants
|t Part 4. Generalizations for $H_{m, n}=0$
|t 21. Introduction to the equations $H_{m, n} = 0$
|t 22. Basic relative invariants for $H_{1,n} = 0$ when $n \geq 2$
|t 23. Laguerre-Forsyth forms for $H_{m, n} = 0$ when $m \geq 2$
|t 24. Formulas for basic relative invariants when $m \geq 2$
|t 25. Extensions of Chapter 7 to $H_{m, n} = 0$, when $m \geq 2$
|t 26. Extensions of Chapter 9 to $H_{m, n} = 0$, when $m \geq 2$
|t 27. Basic relative invariants for $H_{m, n} = 0$ when $m \geq 2$
|t Part 5. Additional classes of equations
|t 28. The class of equations specified by $y"(z) y'(z)$
|t 29. Formulations of greater generality
|t 30. Invariants for simple equations unlike (29.1).
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Differential equations, Nonlinear.
|
650 |
|
0 |
|a Invariants.
|
650 |
|
6 |
|a Équations différentielles non linéaires.
|
650 |
|
6 |
|a Invariants.
|
650 |
|
7 |
|a MATHEMATICS
|x Calculus.
|2 bisacsh
|
650 |
|
7 |
|a MATHEMATICS
|x Mathematical Analysis.
|2 bisacsh
|
650 |
|
7 |
|a Differential equations, Nonlinear
|2 fast
|
650 |
|
7 |
|a Invariants
|2 fast
|
758 |
|
|
|i has work:
|a Basic global relative invariants for nonlinear differential equations (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCGgQMjBDhGQcYDdqWTMMfq
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Chalkley, Roger, 1931-
|t Basic global relative invariants for nonlinear differential equations /
|x 0065-9266
|z 9780821839911
|
830 |
|
0 |
|a Memoirs of the American Mathematical Society ;
|v no. 888.
|x 0065-9266
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3114078
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH35006145
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL3114078
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr11039697
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 843382
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 12081734
|
994 |
|
|
|a 92
|b IZTAP
|