Cargando…

Basic global relative invariants for nonlinear differential equations /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Chalkley, Roger, 1931-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence, R.I. : American Mathematical Society, ©2007.
Colección:Memoirs of the American Mathematical Society ; no. 888.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBOOKCENTRAL_ocn851089287
003 OCoLC
005 20240329122006.0
006 m o d
007 cr un|||||||||
008 130627s2007 riu ob 001 0 eng d
040 |a GZM  |b eng  |e pn  |c GZM  |d OCLCO  |d COO  |d UIU  |d OCLCF  |d N$T  |d LLB  |d E7B  |d YDXCP  |d OCLCQ  |d EBLCP  |d DEBSZ  |d OCLCQ  |d LEAUB  |d UKAHL  |d OCLCQ  |d K6U  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 922981509 
020 |a 9781470404949  |q (electronic bk.) 
020 |a 147040494X  |q (electronic bk.) 
020 |z 9780821839911  |q (alk. paper) 
020 |z 0821839918  |q (alk. paper) 
029 1 |a AU@  |b 000062344184 
029 1 |a DEBSZ  |b 452551404 
035 |a (OCoLC)851089287  |z (OCoLC)922981509 
050 4 |a QA371  |b .C435 2007 
072 7 |a MAT  |x 005000  |2 bisacsh 
072 7 |a MAT  |x 034000  |2 bisacsh 
082 0 4 |a 515/.355  |2 22 
084 |a 31.44  |2 bcl 
049 |a UAMI 
100 1 |a Chalkley, Roger,  |d 1931-  |1 https://id.oclc.org/worldcat/entity/E39PBJB8wbT6mbmFrWJKDr8grq 
245 1 0 |a Basic global relative invariants for nonlinear differential equations /  |c Roger Chalkley. 
260 |a Providence, R.I. :  |b American Mathematical Society,  |c ©2007. 
300 |a 1 online resource (xii, 365 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Memoirs of the American Mathematical Society,  |x 1947-6221 ;  |v v. 888 
500 |a "November 2007, volume 190, number 888 (first of three numbers)." 
504 |a Includes bibliographical references (pages 357-358) and index. 
588 0 |a Print version record. 
505 0 0 |t Part 1. Foundations for a general theory  |t 1. Introduction  |t 2. The coefficients $c^*_{i, j}(z)$ of (1.3)  |t 3. The coefficients $c^{**}_{i, j}(\zeta)$ of (1.5)  |t 4. Isolated results needed for completeness  |t 5. Composite transformations and reductions  |t 6. Related Laguerre-Forsyth canonical forms  |t Part 2. The basic relative invariants for $Q_m=0$ when $m\ge 2$  |t 7. Formulas that involve $L_{i, j}(z)$  |t 8. Basic semi-invariants of the first kind for $m \geq 2$  |t 9. Formulas that involve $V_{i, j}(z)$  |t 10. Basic semi-invariants of the second kind for $m \geq 2$  |t 11. The existence of basic relative invariants  |t 12. The uniqueness of basic relative invariants  |t 13. Real-valued functions of a real variable  |t Part 3. Supplementary results  |t 14. Relative invariants via basic ones for $m \geq 2$  |t 15. Results about $Q_m$ as a quadratic form  |t 16. Machine computations  |t 17. The simplest of the Fano-type problems for (1.1)  |t 18. Paul Appell's condition of solvability for $Q_m = 0$  |t 19. Appell's condition for $Q_2 = 0$ and related topics  |t 20. Rational semi-invariants and relative invariants  |t Part 4. Generalizations for $H_{m, n}=0$  |t 21. Introduction to the equations $H_{m, n} = 0$  |t 22. Basic relative invariants for $H_{1,n} = 0$ when $n \geq 2$  |t 23. Laguerre-Forsyth forms for $H_{m, n} = 0$ when $m \geq 2$  |t 24. Formulas for basic relative invariants when $m \geq 2$  |t 25. Extensions of Chapter 7 to $H_{m, n} = 0$, when $m \geq 2$  |t 26. Extensions of Chapter 9 to $H_{m, n} = 0$, when $m \geq 2$  |t 27. Basic relative invariants for $H_{m, n} = 0$ when $m \geq 2$  |t Part 5. Additional classes of equations  |t 28. The class of equations specified by $y"(z) y'(z)$  |t 29. Formulations of greater generality  |t 30. Invariants for simple equations unlike (29.1). 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Differential equations, Nonlinear. 
650 0 |a Invariants. 
650 6 |a Équations différentielles non linéaires. 
650 6 |a Invariants. 
650 7 |a MATHEMATICS  |x Calculus.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Mathematical Analysis.  |2 bisacsh 
650 7 |a Differential equations, Nonlinear  |2 fast 
650 7 |a Invariants  |2 fast 
758 |i has work:  |a Basic global relative invariants for nonlinear differential equations (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGgQMjBDhGQcYDdqWTMMfq  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Chalkley, Roger, 1931-  |t Basic global relative invariants for nonlinear differential equations /  |x 0065-9266  |z 9780821839911 
830 0 |a Memoirs of the American Mathematical Society ;  |v no. 888.  |x 0065-9266 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3114078  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH35006145 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL3114078 
938 |a ebrary  |b EBRY  |n ebr11039697 
938 |a EBSCOhost  |b EBSC  |n 843382 
938 |a YBP Library Services  |b YANK  |n 12081734 
994 |a 92  |b IZTAP