Non-doubling Ahlfors measures, perimeter measures, and the characterization of the trace spaces of Sobolev functions in Carnot-Carathéodory spaces /
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Providence, R.I. :
American Mathematical Society,
©2006.
|
Colección: | Memoirs of the American Mathematical Society ;
no. 857. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- 1. Introduction 2. Carnot groups 3. The characteristic set 4. $X$-variation, $X$-perimeter and surface measure 5. Geometric estimates from above on CC balls for the perimeter measure 6. Geometric estimates from below on CC balls for the perimeter measure 7. Fine differentiability properties of Sobolev functions 8. Embedding a Sobolev space into a Besov space with respect to an upper Ahlfors measure 9. The extension theorem for a Besov space with respect to a lower Ahlfors measure 10. Traces on the boundary of $(\epsilon, \delta)$ domains 11. The embedding of $B^p_\beta (\Omega, d\mu)$ into $L^q(\Omega, d\mu)$ 12. Returning to Carnot groups 13. The Neumann problem 14. The case of Lipschitz vector fields.