|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
EBOOKCENTRAL_ocn851088931 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr un||||||||| |
008 |
130627s2006 riu ob 000 0 eng d |
040 |
|
|
|a GZM
|b eng
|e pn
|c GZM
|d OCLCO
|d COO
|d UIU
|d OCLCF
|d N$T
|d LLB
|d YDXCP
|d E7B
|d OCLCQ
|d EBLCP
|d DEBSZ
|d OCLCQ
|d LEAUB
|d UKAHL
|d OCLCQ
|d K6U
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCL
|
019 |
|
|
|a 908039612
|a 922981700
|
020 |
|
|
|a 9781470404567
|q (electronic bk.)
|
020 |
|
|
|a 1470404567
|q (electronic bk.)
|
020 |
|
|
|z 0821838741
|q (alk. paper)
|
020 |
|
|
|z 9780821838747
|q (alk. paper)
|
029 |
1 |
|
|a AU@
|b 000062344258
|
029 |
1 |
|
|a AU@
|b 000069468983
|
029 |
1 |
|
|a DEBSZ
|b 452551935
|
035 |
|
|
|a (OCoLC)851088931
|z (OCoLC)908039612
|z (OCoLC)922981700
|
050 |
|
4 |
|a QA3
|b .A57 no. 852
|a QA374
|
072 |
|
7 |
|a MAT
|x 039000
|2 bisacsh
|
072 |
|
7 |
|a MAT
|x 023000
|2 bisacsh
|
072 |
|
7 |
|a MAT
|x 026000
|2 bisacsh
|
082 |
0 |
4 |
|a 510 s
|a 515/.353
|2 22
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Barbu, Viorel.
|
245 |
1 |
0 |
|a Tangential boundary stabilization of Navier-Stokes equations /
|c Viorel Barbu, Irena Lasiecka, Roberto Triggiani.
|
260 |
|
|
|a Providence, R.I. :
|b American Mathematical Society,
|c ©2006.
|
300 |
|
|
|a 1 online resource (ix, 128 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Memoirs of the American Mathematical Society,
|x 1947-6221 ;
|v v. 852
|
500 |
|
|
|a "Volume 181, number 852 (first of 5 numbers)."
|
504 |
|
|
|a Includes bibliographical references.
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
0 |
|t 1. Introduction
|t 2. Main results
|t 3. Proof of Theorems 2.1 and 2.2 on the linearized system (2.4): $d$ = 3
|t 4. Boundary feedback uniform stabilization of the linearized system (3.1.4) via an optimal control problem and corresponding Riccati theory. Case $d$ = 3
|t 5. Theorem 2.3(i): Well-posedness of the Navier-Stokes equations with Riccati-based boundary feedback control. Case $d$ = 3
|t 6. Theorem 2.3(ii): Local uniform stability of the Navier-Stokes equations with Riccati-based boundary feedback control
|t 7. A PDE-interpretation of the abstract results in Sections 5 and 6.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Navier-Stokes equations.
|
650 |
|
0 |
|a Boundary layer.
|
650 |
|
0 |
|a Mathematical optimization.
|
650 |
|
0 |
|a Riccati equation.
|
650 |
|
6 |
|a Équations de Navier-Stokes.
|
650 |
|
6 |
|a Couche limite.
|
650 |
|
6 |
|a Optimisation mathématique.
|
650 |
|
6 |
|a Équation de Riccati.
|
650 |
|
7 |
|a MATHEMATICS
|x Essays.
|2 bisacsh
|
650 |
|
7 |
|a MATHEMATICS
|x Pre-Calculus.
|2 bisacsh
|
650 |
|
7 |
|a MATHEMATICS
|x Reference.
|2 bisacsh
|
650 |
|
7 |
|a Boundary layer
|2 fast
|
650 |
|
7 |
|a Mathematical optimization
|2 fast
|
650 |
|
7 |
|a Navier-Stokes equations
|2 fast
|
650 |
|
7 |
|a Riccati equation
|2 fast
|
700 |
1 |
|
|a Lasiecka, I.
|q (Irena),
|d 1948-
|
700 |
1 |
|
|a Triggiani, R.
|q (Roberto),
|d 1942-
|
758 |
|
|
|i has work:
|a Tangential boundary stabilization of Navier-Stokes equations (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCGjRCjqvKQHBMXdyD4gfWP
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Barbu, Viorel.
|t Tangential boundary stabilization of Navier-Stokes equations /
|x 0065-9266
|z 9780821838747
|
830 |
|
0 |
|a Memoirs of the American Mathematical Society ;
|v no. 852.
|x 0065-9266
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3114130
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH35006108
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL3114130
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr11039749
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 843348
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 12081701
|
994 |
|
|
|a 92
|b IZTAP
|