The RO(G)-graded equivariant ordinary homology of G-cell complexes with even-dimensional cells for G=Z/p /
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Providence, R.I. :
American Mathematical Society,
2004.
|
Colección: | Memoirs of the American Mathematical Society ;
no. 794. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Introduction Part 1. The homology of $\mathbb {Z}/p$-cell complexes with even-dimensional cells Chapter 1. Preliminaries Chapter 2. The main freeness theorem (Theorem 2.6) Chapter 3. An outline of the proof of the main freeness result (Theorem 2.6) Chapter 4. Proving the single-cell freeness results Chapter 5. Computing $H^G_*(B \cup DV; A)$ in the key dimensions Chapter 6. Dimension-shifting long exact sequences Chapter 7. Complex Grassmannian manifolds Part 2. Observations about $RO(G)$-graded equivariant ordinary homology Chapter 8. The computation of $H^S_*$ for arbitrary $S$ Chapter 9. Examples of $H^S_*$ Chapter 10. $RO(G)$-graded box products Chapter 11. A weak universal coefficient theorem Chapter 12. Observations about Mackey functors.