|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
EBOOKCENTRAL_ocn851088865 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr un||||||||| |
008 |
130627s2002 riua ob 000 0 eng d |
040 |
|
|
|a GZM
|b eng
|e pn
|c GZM
|d OCLCO
|d COO
|d UIU
|d OCLCF
|d LLB
|d E7B
|d OCLCQ
|d EBLCP
|d YDXCP
|d OCLCQ
|d AU@
|d UKAHL
|d OCLCQ
|d LEAUB
|d OCLCQ
|d VT2
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCL
|
019 |
|
|
|a 908039696
|a 922981959
|a 1086551829
|
020 |
|
|
|a 9781470403331
|
020 |
|
|
|a 1470403331
|
020 |
|
|
|z 9780821827680
|
020 |
|
|
|z 0821827685
|
029 |
1 |
|
|a AU@
|b 000069468096
|
035 |
|
|
|a (OCoLC)851088865
|z (OCoLC)908039696
|z (OCoLC)922981959
|z (OCoLC)1086551829
|
050 |
|
4 |
|a QA3
|b .A57 no. 740
|a QA274.3
|
082 |
0 |
4 |
|a 510 s 519.2
|2 21
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Durrett, Richard,
|d 1951-
|
245 |
1 |
0 |
|a Mutual invadability implies coexistence in spatial models /
|c Rick Durrett.
|
260 |
|
|
|a Providence, R.I. :
|b American Mathematical Society,
|c 2002.
|
300 |
|
|
|a 1 online resource (viii, 118 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Memoirs of the American Mathematical Society,
|x 1947-6221 ;
|v v. 740
|
500 |
|
|
|a "March 2002, vol. 156, number 740 (first of 5 numbers)."
|
504 |
|
|
|a Includes bibliographical references (pages 110-118).
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
0 |
|t Introduction
|t 1. Perturbation of one-dimensional systems
|t 2. Two-species examples
|t 3. Lower bounding lemmas for PDE
|t 4. Perturbation of higher-dimensional systems
|t 5. Lyapunov functions for Lotka Volterra systems
|t 6. Three species linear competion models
|t 7. Three species predator-prey systems
|t 8. Some asymptotic results for our ODE and PDE.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Stochastic processes.
|
650 |
|
0 |
|a Reaction-diffusion equations.
|
650 |
|
0 |
|a Biology
|x Mathematical models.
|
650 |
|
6 |
|a Processus stochastiques.
|
650 |
|
6 |
|a Équations de réaction-diffusion.
|
650 |
|
6 |
|a Biologie
|x Modèles mathématiques.
|
650 |
|
7 |
|a Biology
|x Mathematical models
|2 fast
|
650 |
|
7 |
|a Reaction-diffusion equations
|2 fast
|
650 |
|
7 |
|a Stochastic processes
|2 fast
|
758 |
|
|
|i has work:
|a Mutual invadability implies coexistence in spatial models (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCGvRWgGpMd6PqFGddCkxDq
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Durrett, Richard, 1951-
|t Mutual invadability implies coexistence in spatial models /
|x 0065-9266
|z 9780821827680
|
830 |
|
0 |
|a Memoirs of the American Mathematical Society ;
|v no. 740.
|x 0065-9266
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3114358
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH35005988
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL3114358
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr11041136
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 12375453
|
994 |
|
|
|a 92
|b IZTAP
|