A geometric setting for Hamiltonian perturbation theory /
Introduction Part 1. Dynamics: Lie-Theoretic preliminaries Action-group coordinates On the existence of action-group coordinates Naive averaging An abstract formulation of Nekhoroshev's theorem Applying the abstract Nekhoroshev's theorem to action-group coordinates Nekhoroshev-type estimat...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Providence, R.I. :
American Mathematical Society,
©2001.
|
Colección: | Memoirs of the American Mathematical Society ;
no. 727. |
Temas: | |
Acceso en línea: | Texto completo |
Sumario: | Introduction Part 1. Dynamics: Lie-Theoretic preliminaries Action-group coordinates On the existence of action-group coordinates Naive averaging An abstract formulation of Nekhoroshev's theorem Applying the abstract Nekhoroshev's theorem to action-group coordinates Nekhoroshev-type estimates for momentum maps Part 2. Geometry: On Hamiltonian $G$-spaces with regular momenta Action-group coordinates as a symplectic cross-section Constructing action-group coordinates The axisymmetric Euler-Poinsot rigid body Passing from dynamic integrability to geometric integrability Concluding remarks Appendix A. Proof of the Nekhoroshev-Lochak theorem Appendix B. Proof the ${\mathcal W}$ is a slice Appendix C. Proof of the extension lemma Appendix D. An application of converting dynamic integrability into geometric integrability: The Euler-Poinsot rigid body revisited Appendix E. Dual pairs, leaf correspondence, and symplectic reduction Bibliography. |
---|---|
Notas: | "September 2001, volume 153, number 727 (third of 5 numbers)." |
Descripción Física: | 1 online resource (xviii, 112 pages) : illustrations |
Bibliografía: | Includes bibliographical references (pages 110-112). |
ISBN: | 9781470403201 147040320X |
ISSN: | 1947-6221 ; 0065-9266 |