Cargando…

Surfaces with K²=7 and pg=4 /

Introduction The canonical system Some known results Surfaces with $K^2=7, p_g=4$, such that the canonical system doesn't have a fixed part $\vert K\vert$ has a (non trivial) fixed part The moduli space Bibliography.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Bauer, Ingrid C., 1967-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence, R.I. : American Mathematical Society, ©2001.
Colección:Memoirs of the American Mathematical Society ; no. 721.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBOOKCENTRAL_ocn851088853
003 OCoLC
005 20240329122006.0
006 m o d
007 cr un|||||||||
008 130627s2001 riua ob 000 0 eng d
040 |a GZM  |b eng  |e pn  |c GZM  |d OCLCO  |d COO  |d UIU  |d OCLCF  |d LLB  |d E7B  |d OCLCQ  |d YDXCP  |d EBLCP  |d OCLCQ  |d AU@  |d OCLCQ  |d UKAHL  |d OCLCQ  |d LEAUB  |d VT2  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCQ  |d QGK  |d OCLCO  |d OCLCL 
019 |a 908039927  |a 922964881  |a 1086449728  |a 1259246397 
020 |a 9781470403140 
020 |a 1470403145 
020 |z 9780821826898 
020 |z 0821826891  |q (Trade Paper) 
029 1 |a AU@  |b 000069467970 
035 |a (OCoLC)851088853  |z (OCoLC)908039927  |z (OCoLC)922964881  |z (OCoLC)1086449728  |z (OCoLC)1259246397 
050 4 |a QA3  |b .A57 no. 721  |a QA571 
082 0 4 |a 510 s 516.3/52  |2 21 
049 |a UAMI 
100 1 |a Bauer, Ingrid C.,  |d 1967-  |1 https://id.oclc.org/worldcat/entity/E39PCjqKv7KxWJbF4Gm4c6hDYP 
245 1 0 |a Surfaces with K²=7 and pg=4 /  |c Ingrid C. Bauer. 
260 |a Providence, R.I. :  |b American Mathematical Society,  |c ©2001. 
300 |a 1 online resource (viii, 79 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Memoirs of the American Mathematical Society,  |x 1947-6221 ;  |v v. 721 
504 |a Includes bibliographical references (pages 78-79). 
588 0 |a Print version record. 
520 8 |a Introduction The canonical system Some known results Surfaces with $K^2=7, p_g=4$, such that the canonical system doesn't have a fixed part $\vert K\vert$ has a (non trivial) fixed part The moduli space Bibliography. 
505 0 0 |t Introduction  |t 1. The canonical system  |t 2. Some known results  |t 3. Surfaces with $K^2 = 7$, $p_g = 4$, such that the canonical system doesn't have a fixed part  |t 4. $  |t 5. The moduli space. 
546 |a English. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Surfaces, Algebraic. 
650 6 |a Surfaces algébriques. 
650 7 |a Surfaces, Algebraic  |2 fast 
758 |i has work:  |a Surfaces with K²=7 and pg=4 (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFGPVyCQgM4kc63vxYw8cq  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Bauer, Ingrid C., 1967-  |t Surfaces with K²=7 and pg=4 /  |x 0065-9266  |z 9780821826898 
830 0 |a Memoirs of the American Mathematical Society ;  |v no. 721.  |x 0065-9266 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3114503  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH35005970 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL3114503 
938 |a ebrary  |b EBRY  |n ebr11041281 
938 |a YBP Library Services  |b YANK  |n 12375435 
994 |a 92  |b IZTAP